Appendix D Modelling Quality Report

COPYRIGHT NOTICE

This document, Hydrologic and Hydraulic Modelling - Pumicestone Passage (PUM), is licensed under the <u>Creative Commons Attribution 4.0 Licence</u>, unless otherwise indicated.

Please give attribution to: © Moreton Bay Regional Council 2016

We also request that you observe and retain any notices that may accompany this material as part of the attribution.

Notice Identifying Other Material and/or Rights in this Publication:

The author of this document has taken steps to both identify third-party material and secure permission for its reproduction and reuse. However, please note that where these materials are not licensed under a Creative Commons licence or similar terms of use, you should obtain permission from the rights holder to reuse their material beyond the ways you are permitted to use them under the <u>Copyright Act 1968</u>. Where third party material is used, this has been identified within the document. Please also see the Table of References.

Further Information

For further information about the copyright in this document, please contact: Moreton Bay Regional Council PO Box 159 CABOOLTURE QLD 4510 Email: <u>mbrc@moretonbay.qld.gov.au</u> Phone: (07) 3205 0555

DISCLAIMER

The <u>Creative Commons Attribution 4.0 Licence</u> contains a Disclaimer of Warranties and Limitation of Liability. In addition: This flood study and its associated models and data were produced by Aurecon Australia Pty Ltd for Moreton Bay Regional Council only. The views expressed in the study are those of the author(s) alone, and do not necessarily represent the views of the Moreton Bay Regional Council. <u>Reuse of this study or its</u> <u>associated data by anyone for any other purpose could result in error and/or loss</u>. You should obtain professional advice before making decisions based upon the contents of this document.

Appendix D Modelling Quality Report

aurecon

Project: Regional Floodplain Database Model Quality Report Pumicestone Passage (PUM)

Reference: 211090 Prepared for: Moreton Bay Regional Council Revision: 1 14 June 2012

Document Control Record

Document prepared by:

Aurecon Australia Pty Ltd ABN 54 005 139 873 Level 14, 32 Turbot Street Brisbane QLD 4000 Locked Bag 331 Brisbane QLD 4001 Australia

- **T** +61 7 3173 8000
- F +61 7 3173 8001
- E brisbane@aurecongroup.com
- W aurecongroup.com

A person using Aurecon documents or data accepts the risk of:

a) Using the documents or data in electronic form without requesting and checking them for accuracy against the original hard copy version.

Do	cument control		1 -		1	aurecon						
Repo	ort Title	Model Quality Report: Pumicestone Passage (P	UM)									
Docu	iment ID		Project Nu	211090								
File F	Path	PUM Quality Report Rev?	PUM Quality Report Rev1.docx									
Client		Moreton Bay Regional Council	Client Contact		Hester van Zijl							
Rev	Date	Revision Details/Status	Prepared by	Prepared by Author		Approver						
0	1 June 2012	Final	C Smyth	T Campbell	T Graham	C Russell						
1 14 June 2012		Final with client comments addressed	C Smyth	T Campbell	T Graham	C Russell						
Curre	ent Revision	1										

Approval			
Author Signature	Mand	Approver Signature	GR 1
Name	Talia Campbell	Name	Chris Russell
Title	Associate	Title	Unit Leader, Water Services

Regional Floodplain Database Model Quality Report Pumicestone Passage (PUM)

Date | 14 June 2012 Reference | 211090 Revision | 1

Aurecon Australia Pty Ltd ABN 54 005 139 873 Level 14, 32 Turbot Street Brisbane QLD 4000 Locked Bag 331 Brisbane QLD 4001 Australia

- **T** +61 7 3173 8000
- **F** +61 7 3173 8001
- E brisbane@aurecongroup.com
- W aurecongroup.com

Contents

1	Intro	oduction	3	
	1.1	Study	objective	3
	1.2	Object	3	
2	TUF	LOW mo	odel setup process	4
	2.1	Code I	boundary	4
	2.2	Inflows	s and SA boundaries	5
		2.2.1	Downstream boundaries	5
		2.2.2	Survey, topography and Zpoints	6
	2.3	Materi	ials	6
	2.4	6		
3	Qua	lity asse	essment process	7
	3.1	Hydrol	logic model quality	7
	3.2	Hydrau	ulic model quality	7
4	Qua	lity asse	essment results	8
	4.1	Hydrol	logic model quality	8
	4.2	Hydrau	ulic model quality	9
		4.2.1	Overall stability	9
		4.2.2	Structure stability	10
		4.2.3	Sensitivity run inundation extents	10
		4.2.4	Iterated models for stability improvement	10
5	Con	clusions	s	14

Appendices

Appendix A

Modelled Structures

Appendix B

Overall Stability Results

Appendix C

EDS Culvert Discharge Graphs

р1

Index of Figures

Figure 1 Code boundary	4
Figure 2 SA Boundaries	5
Figure 3 WBNM 0180m Event Discharges – Ningi Creek	8
Figure 4 WBNM EDS Event Discharges – Ningi Creek	9
Figure 5 Areas where further improvement of the TUFLOW model is recommended	12

1 Introduction

1.1 Study objective

Moreton Bay Regional Council (MBRC) is delivering a Regional Floodplain Database (RFD) in support of their flood risk management, considering emergency response, development control, strategic landuse and infrastructure planning. The MBRC was recently formed under local government amalgamations and is responsible for Caboolture, Pine Rivers, Redcliffe and Bribie Island. The RFD project focuses on the northern sector as a key growth area for South-East Queensland.

The project is being funded by MBRC, Emergency Management Queensland (EMQ) and Emergency Management Australia (EMA) as part of the Disaster Resilience Program and will provide:

- A comprehensive and consistent description of flood behaviour across the region
- Strategies for management of any flooding problems identified
- A system/process to store and manage this information and keep it up-to-date

Stage 1 of the project was completed in July 2010 and involved a number of sub-projects. These projects delivered consistent processes and protocols for the detailed hydrologic and hydraulic model development. A key sub-project involved the development of broadscale hydrodynamic models for each minor basin to provide general understanding of flooding mechanisms and allow prioritisation of data capture.

Stage 2 (current stage) of the project involves the development of detailed hydrologic and hydraulic models for each minor basin.

Stage 3 will build on the detailed models and "add value" through assessment of flood damages and community resilience measures.

1.2 Objective of model quality report

This report describes the model setup process adopted for the detailed 10 m grid and 5 m grid TUFLOW models of the Pumicestone Passage (PUM) minor basin, including all the changes made to the broadscale model. It also describes the model quality and model issues for the hydrologic and hydraulic models.

2 TUFLOW model setup process

2.1 Code boundary

The code boundary was modified as per the following:

- Higher areas which floods are not likely to reach were removed from the model to try and reduce run times
- Total inflow locations were removed from the model. In the areas where these were applied to the broadscale model the code boundary was extended to capture part of every sub-catchment

In Figure 1 below, the red line shows the adopted code boundary and the blue line shows the broadscale model code boundary.

Figure 1 | Code boundary

р4

2.2 Inflows and SA boundaries

SA boundaries were adopted based upon the final hydrography minor catchments layer provided to Aurecon on 24 February 2011. The following changes were made to this layer:

- Near the downstream boundary, the SA boundaries were modified so the most downstream catchment was not applied in the ocean
- At structures the SA boundaries were modified so they crossed the top of the structure and inflows were then applied upstream of the structure

Figure 2 below shows an example of how the SA boundaries were modified at structures. The black line represents the adopted SA boundary and the grey line represents the minor catchment definition. In this image, flow is from the left of the page towards the right of the page.

Figure 2 | SA Boundaries

2.2.1 Downstream boundaries

The downstream boundary location was modified to match the code boundary location.

Mean High Water Springs was adopted as the downstream boundary conditions. The values applied to the downstream boundaries were determined based upon the Maritime Safety Queensland Tidal Plane data. The following values were adopted:

- At Donnybrook MHWS = 1.88 m and AHD = 1.12 m, therefore a MHWS value of 0.76 m AHD was adopted at the downstream boundary condition for the north east model boundary (ie the outlet of Glass Mountain Creek and Elimbah Creek)
- At Toorbul MHWS = 1.95 m and AHD=1.10 m, therefore a MHWS value of 0.85 m AHD was adopted at the downstream boundary condition for the south east model boundary (ie the outlet of Ningi Creek)

р5

2.2.2 Survey, topography and Zpoints

The Zpoints provided by WorleyParsons were used as the base Zpoints for the model. The following changes were made to the Zpoints:

- In locations where the lowest point within a SA boundary was a culvert inlet, a Zc upstream of the culvert was lowered such that this would become the initial location for SA inflow application
- Where required for model stability, Zlines and Zshapes have been used to lower the cells in the vicinity of culvert inlets and outlets

2.3 Materials

Materials files provided by MBRC at the outset of the project were reviewed and changes were made to these files as per Aurecon's memo to Council on 1 March 2011. Within the Pumicestone Passage model extents, these changes included:

- Extension of the digitised layers to cover the SCRC portion of the catchment
- Removal of dirt roads from the digitised roads layer
- Large buildings within the rural areas were digitised
- Some additional definition was included in the vegetation layer

The Manning's n values associated with the materials files were also updated. The new values were those adopted during the model calibration process undertaken on a number of the other catchments within the MBRC region.

2.4 Structures

Hydraulic structures, including bridges, footbridges, culverts and trunk drains, were incorporated into the model. Appendix A presents details of all modelled structures and all other structures identified in the Data Assessment Report. Comments regarding specific structures are included in this table.

3 Quality assessment process

3.1 Hydrologic model quality

The hydrologic model quality was reviewed using the following process:

- For the 100yr 3hr and EDS runs, the peak outflow volumes and discharges and the time of peak discharge were mapped across the catchment. A visual inspection of these values was undertaken to ensure that peaks were sensible as flows moved through the system
- For the 100yr 3hr and EDS runs, a graphical review of the hydrographs throughout the system was undertaken to check that timing and volume was sensible as flows moved through the system
- It was assumed that if the 100yr 3hr and EDS runs were sensible, then the model would perform adequately for the remainder of the runs

3.2 Hydraulic model quality

The model quality was assessed using the following process:

- Review of model log to determine:
 - Whether the run was completed or unstable
 - Number of negative depths in the run
 - Whether final and peak cumulative mass error values were less than 1%
- Review of culvert discharges to determine:
 - Whether culverts were stable during the peak of the run
 - Extent of instabilities in low flows
 - Whether run duration was long enough to capture peak at all structures
- Review of water levels to determine:
 - Whether instabilities were evident (ie whether any "blow ups" existed)
 - Whether the water surface gradients were sensible throughout the system
- Where required, modifications to the models were made to reduce instabilities and the above process was repeated
 - For the culverts, it was not possible to get all culverts stable for all runs, therefore the focus was upon obtaining stability in the peak of the critical events

4 Quality assessment results

4.1 Hydrologic model quality

The hydrologic model was found to be performing well. The following Figure 3 and Figure 4 show examples of the model hydrographs within the Ningi Creek part of the model. These figures show that:

- Hydrograph shape and timing increase as discharges move through the system as would be expected
- When side tributaries enter the system the proportional discharges from these tributaries is sensible
- The shape of the resultant hydrograph downstream of tributaries adequately accounts for and includes the discharges and shape of the upstream inflow hydrographs (eg in the image below NIN_01_04195 and NIN_24_00000 combine and are routed further downstream to NIN_01_02695)

Figure 3 | WBNM 0180m Event Discharges – Ningi Creek

A similar process to that described in this report for Ningi Creek was undertaken across the entire model area and for more frequent locations within each creek. No significant issues were found with model consistency, therefore the WBNM models were considered to be performing well.

4.2 Hydraulic model quality

Figure 5 shows areas where there are either concerns with the model results or in which future investigations and development to the models may improve the model outcomes. These are discussed further in the following sections.

4.2.1 Overall stability

The parameters which were used to assess the overall stability results are provided in the table in Appendix B. These results show that:

- No 1D negative depths occur in any of the runs
- Typically there are 0-4 2D negative depths occurring in the 10 m model
- In the 5 m model, 2D negative depths are model prevalent, with 6 runs having more than 30
 negative depths. The 50 year 0180 m event has 530 negative depths which occur at two locations
 within the model
- Volume error is within ±0.2% for all events up to the 2000 year ARI event. Volume errors for the PMF events reach up to 1.1%
- Final and peak cumulative mass errors are generally within ±0.2% except for the PMF events where errors up to -1.09% occur

The above parameters are well within acceptable ranges, except for some of the PMF error ranges, and indicate that the model is generally performing well. Whilst the error ranges for the PMF events are slightly outside the acceptable norm, it was not considered that rerunning these models was required, as the PMF event is of such large magnitude and volume that these errors are likely to only have very minor impacts on the overall model predictions. Similarly, it was not considered critical that the 50 year ARI 0180 m event be rerun to fix the stability issue, as it is not likely to have a significant effect on the overall model predictions.

4.2.2 Structure stability

Stability of model structures was problematic and many configurations of inlet/outlet boundaries and topography were tested. The adopted configuration proved to be the most stable. There are a number of culverts in which stability was not able to be achieved for all runs and for the entire duration of the run. Throughout this process, the two most unstable 1D structures were converted to 2D structures to improve stability. The small channels that these structures are located within may be better represented using 1D branches. Stability issues were also common where there are multiple culverts in series, particularly near Rose Creek Road, Beerburrum Road and the North Coast Rail Line.

The culvert discharge results for the EDS run are presented in Appendix C. A summary of the culvert results is as follows:

- Stability is generally increased with increased discharge, ie stability issues tend to occur with low flows
- There are a number of problematic culverts, however they are not problematic throughout all runs
- A number of culverts are unstable in low flow conditions but perform stably throughout the peak of the event
- Generally the culvert discharge and velocity instabilities have very little impact upon water levels both upstream and downstream of the culvert

4.2.3 Sensitivity run inundation extents

The use of SA boundaries for the application of rainfall to the model has impacted upon the location in which inflows are applied in some of the sensitivity runs. For this reason some of the runs show a reduction in flood levels and inundation extents in areas where this would not be expected to occur. To remedy this it would be necessary to rerun all the models and this was not considered prudent given that it was only discovered at a very late stage of the project. Results in these areas should be treated with caution.

4.2.4 Iterated models for stability improvement

In the PUM basin, minor changes were made to the following two model runs to improve the stability:

- For the 5 m grid 100y 0720 m event the model became unstable at the Zshape on Steve Irwin Way. This model was iterated to run 04 and the Zshape was modified
- For the dynamic storm tide model, the downstream boundary was modified to include the following changes:
 - It was uniformly moved closer to the land by approximately 15 m
 - At the outlet to branches GMC_22 and GMC_24 the boundary was extended further into Pumicestone Passage to prevent circulations
 - At the outlet to Ningi Creek it was made orthogonal to the flow to prevent circulations

5,000 m

2,500 m

SA Boundary Application

Notes:

This figure is based on information provided to Aurecon by Moreton Bay Regional Council (MBRC) and other parties. Although the provider of the information has not warranted the accuracy of the data and has waived liability in respect of its use, Aurecon's study was undertaken strictly on the basis that the information that has been provided is accurate accuracy of and accurate for the second strictly on the basis that the information that has been provided is accurate, complete and adequate. Aurecon takes no responsibility and disclaims all liability whatsoever fcr any loss or damage that MBRC may suffer resulting from any conclusions based on information provided to Aurecon, except to the extent that Aurecon expressly indicates in the associated report that it has verified the information to its satisfaction.

Date: 31/05/2012

Version: 0

RFD Detailed Modelling (PUM) Figure 5: Areas of Concern for Future TUFLOW Model Review/Upgrades

5 Conclusions

The Pumicestone Passage detailed modelling has upgraded the 10 m grid broadscale model to both a 10 m grid and a 5 m grid detailed model. This model upgrade has followed the general model setup of the Burpengary Creek (BUR) detailed model.

Changes to the model include:

- Revision of boundary conditions and their locations
- Inclusion of updated Zpoints and some minor modifications to these
- Inclusion of materials layers and some minor modifications to these
- Inclusion of structures and associated boundary conditions

The model quality has been assessed through review of the model results for both the hydrologic and hydraulic model. Key findings of the quality assessment are:

- The hydrologic model is performing well
- The hydraulic model is generally performing well, with the following issues being of note
 - Model errors in a number of the PMF events are slightly outside the acceptable norm
 - Structure stability the stability of the structures has been problematic and whilst stability has been significantly improved, instabilities are still occurring at some structures, particularly in low flow conditions
 - In the sensitivity runs, water levels and inundation extents are shown to reduce in some areas as a result of SA boundaries redistributing flows across the catchments. Results in these areas should be treated with caution

Appendices

Appendix A Modelled Structures

Structure ID	Waterway ID	Structure Type	Crossing Name	Priority*	Is Structure Modelled?	Data Availability/Source & Comments
BEE_01_01652	BEE_01_01652	Bridge	Bruce Highway	A	Yes	Aurecon survey and TMR plans
BEE_01_01675	BEE_01_01675	Bridge	Bruce Highway	А	Yes	TMR plans
BEE_01_06768	BEE_01_06768	Bridge	Railway	А	Yes	Aurecon survey and QR plans
BEE_01_07828	BEE_01_07828	Bridge	Beerburrum Road	А	Yes	TMR Plans
BEE_10_01778	BEE_10_01778	Bridge	Railway	А	Yes	Aurecon survey and QR plans
BEE_18_01376	BEE_18_01376	Bridge	Bruce Highway	А	Yes	Aurecon survey and TMR plans
ELI_01_10536	ELI_01_10536	Bridge	Donnybrook Road	А	Yes	MBRC Plans
SMC_01_13518	SMC_01_13518	Bridge	Twin View Road	А	Yes	MBRC Plans
SMC_01_02645	SMC_01_02645	Bridge	Bruce Highway	А	Yes	TMR Plans
SMC_01_02671	SMC_01_02671	Bridge	Bruce Highway	А	Yes	TMR Plans
SMC_01_06731	SMC_01_06731	Bridge	Railway	А	Yes	Aurecon survey and QR plans
SMC_01_06873	SMC_01_06873	Bridge	Beerburrum Road	А	Yes	Aurecon survey and TMR plans
SMC_12_00384	SMC_12_00384	Bridge	Twin View Road	А	Yes	Aurecon survey
01_06768	BEE_01_06768	Culvert	Railway	А	Yes	QR plans
N/A	BEE_01_11919	Culvert	Old Gympie Road	В	No	No
06_00000	BEE_06_00000	Culvert	Rose Creek Road	N/A	Yes	MBRC Survey, Survey ID = BEE_06_00530
06_00530	BEE_06_00530	Culvert	Railway	В	Yes	MBRC Survey
N/A	BEE_06_00568	Culvert	Beerburrum Road	В	No	
08_00425a	BEE_08_00425	Culvert	Railway	А	Yes	QR plans
08_00425b	BEE_08_00425	Culvert	Rose Creek Road	А	Yes	MBRC Survey, Survey ID = BEE_08_00755
08_00755	BEE_08_00755	Culvert	Railway	В	Yes	MBRC Survey
N/A	BEE_08_00787	Culvert	Beerburrum Road	В	No	No
09_01117	BEE_09_01117	Culvert	Bruce Highway	А	Yes	Aurecon survey and TMR plans

Structure ID	Waterway ID	Structure Type	Crossing Name	Priority*	Is Structure Modelled?	Data Availability/Source & Comments
N/A	BEE_09_01592	Culvert	Steve Irwin Way	В	No	No
10_01633a	BEE_10_01633	Culvert	Railway	А	Yes	MBRC Survey, Survey ID = BEE_10_01724
10_01633b	BEE_10_01633	Culvert	Railway	А	Yes	QR plans
10_01724	BEE_10_01724	Culvert	Railway	А	Yes	MBRC Survey
12_00243	BEE_12_00243	Culvert	Bruce Highway	А	Yes	Aurecon survey and TMR plans
12_00275	BEE_12_00275	Culvert	Bruce Highway	А	Yes	Aurecon survey and TMR plans
14_00454	BEE_14_00454	Culvert	Bruce Highway	В	Yes	TMR plans
N/A	BEE_14_00481	Culvert	Bruce Highway	В	No	No
16_00679	BEE_16_00679	Culvert	Bruce Highway	В	Yes	TMR plans
16_00703	BEE_16_00703	Culvert	Bruce Highway	В	Yes	TMR plans
18_01396	BEE_18_01396	Culvert	Bruce Highway	А	Yes	TMR plans
18_05085a	BEE_18_05085	Culvert	Rose Creek Road	В	Yes	MBRC Survey
18_05085b	BEE_18_05085	Culvert	Railway	А	Yes	MBRC Survey, Survey ID = BEE_18_05151
18_05151	BEE_18_05151	Culvert	Railway	A	Yes	MBRC Survey
18_05190	BEE_18_05190	Culvert	Beerburrum Road	В	Yes	TMR plans
N/A	ELI_03_01693	Culvert	Bruce Highway	В	No	No
07_00183	ELI_07_00183	Culvert	Meldale Road	В	Yes	MBRC Survey
09_00104	ELI_09_00104	Culvert	Meldale Road	В	Yes	MBRC Survey
N/A	ELI_10_00057	Culvert	Pumicestone Road	В	No	No
11_04807	ELI_11_04807	Culvert	Donnybrook Road	В	Yes	MBRC Survey
N/A	Not on reach	Culvert	Pumicestone Road	В	Not on reach	No, 5 separate culverts
13_01616	ELI_13_01616	Culvert	Donnybrook Road	В	Yes	MBRC Survey
N/A	ELI_14_00382	Culvert	Pumicestone Road	В	No	No

Structure ID	Waterway ID	Structure Type	Crossing Name	Priority*	Is Structure Modelled?	Data Availability/Source & Comments
N/A	ELI_16_01136	Culvert	Pumicestone Road	stone Road B		No
18_00000a-d	ELI_18_00000	Trunk Drain	Esplanade	A	Yes	MBRC GIS. Dimensions based on GIS. ILs based on GIS but some assumptions made
20_00000	ELI_20_00000	Culvert	Esplanade	А	Yes	MBRC GIS
20_00617	ELI_20_00617	Culvert	Freeman Road	A	Yes	MBRC GIS
22_00038	ELI_22_00038	Culvert	Esplanade	A	Yes	MBRC Survey
24_00122	ELI_24_00122	Culvert	Esplanade	A	Yes	MBRC Survey
01_15669	GMC_01_15669	Culvert	Bruce Highway	В	Yes	TMR plans
02_00459	GMC_02_00459	Culvert	Bruce Highway	В	Yes	TMR plans
04_02236	GMC_04_02236	Culvert	Bruce Highway	В	Yes	TMR plans
24_00212	GMC_24_00212	Culvert	Esplanade North	А	Yes	MBRC Survey
24_00331	GMC_24_00331	Culvert	Amy Street	A	Yes	MBRC Survey
26_00000	GMC_26_00000	Culvert	Amy Street	A	Yes	MBRC GIS
28_02630	GMC_28_02630	Culvert	Donnybrook Road	В	Yes	MBRC Survey
N/A	Not on reach	Culvert	Pumicestone Road	В	No	No, 7 separate culverts
N/A	NIN_01_18391	Culvert	Pumicestone Road	В	No	No
01_23388	NIN_01_23388	Culvert	Rutters Road	В	Yes	MBRC Survey
N/A	NIN_01_23388	Culvert	Bruce Highway	В	No	No
N/A	NIN_14_00567	Culvert	Minor Road	A	No	No
N/A	NIN_14_01586	Culvert	Wattle Grove Drive	A	No	No
14_01586	NIN_14_01586	Culvert	Wrenaus Way	А	Yes	MBRC Survey
22_00733	NIN_22_00733	Culvert	Bribie Island Road	A	Yes	Aurecon survey and TMR plans
24_00716	NIN_24_00716	Culvert	Bribie Island Road	A	Yes	Aurecon survey and TMR plans

Structure ID	Waterway ID	Structure Type	Crossing Name	Priority*	Is Structure Modelled?	Data Availability/Source & Comments
24_03255	NIN_24_03255	Culvert	Sandstone Bvd	A	Yes	No, Dimensions based on site visit
28_00581	NIN_28_00581	Culvert	Wetland Outlet	A	Yes	No, Dimensions based on site visit
28_02571	NIN_28_02571	Culvert	Sandheath Place	A	Yes	MBRC Survey, Modelled as a 2D structure
28_02761	NIN_28_02761	Culvert	Redondo Street	A	Yes	MBRC Survey, Modelled as a 2D structure
N/A	NIN_36_00585	Culvert	Bribie Island Road	В	No	No
36_03043	NIN_36_03043	Culvert	Bestmann Road East	А	Yes	MBRC Survey
36_03325	NIN_36_03325	Culvert	Carpenter Way	А	Yes	MBRC Survey
N/A	SMC_01_11575	Culvert	Old Gympie Road	В	No	No
04_00701	SMC_04_00701	Culvert	Twin View Road	N/A	Yes	MBRC Survey
N/A	SMC_08_00499	Culvert	Prosser Road	В	No	No
09_02090	SMC_09_02090	Culvert	Rose Creek Road	В	Yes	MBRC Survey
09_02136	SMC_09_02136	Culvert	Railway	А	Yes	QR plans
09_02248	SMC_09_02248	Culvert	Beerburrum Road	А	Yes	Aurecon survey and TMR plans
N/A	SMC_09_06807	Culvert	Old Gympie Road	В	No	No
12_04150	SMC_12_04150	Culvert	Twin View Road	N/A	Yes	MBRC Survey
N/A	SMC_13_00311	Culvert	Twin View Road	В	No	No
N/A	SMC_14_01506	Culvert	Woodlands Drive	В	No	No
15_00438	SMC_15_00438	Culvert	Railway	В	Yes	QR plans
N/A	SMC_15_00665	Culvert	Beerburrum Road	А	No	No
17_01044	SMC_17_01044	Culvert	Bruce Highway	В	Yes	TMR plans
17_01055	SMC_17_01055	Culvert	Bruce Highway	В	Yes	TMR plans
18_00832	SMC_18_00832	Culvert	Woodlands Drive	В	Yes	MBRC Survey
19_00348	SMC_19_00348	Culvert	Bruce Highway	В	Yes	TMR plans

Structure ID	Waterway ID	Structure Type	Crossing Name	Priority*	Is Structure Modelled?	Data Availability/Source & Comments
19_00373	SMC_19_00373	Culvert	Bruce Highway	В	Yes	TMR plans
20_01371	SMC_20_01371	Culvert	Williams Road	В	Yes	MBRC Survey
20_03707	SMC_20_03707	Culvert	Powell Road	В	Yes	MBRC Survey
N/A	SMC_20_03766	Culvert	Hoffman Road	В	No	No
20_05638	SMC_20_05638	Culvert	Minor Road	В	Yes	MBRC Survey
20_06732	SMC_20_06732	Culvert	Woodlands Drive	N/A	Yes	MBRC Survey
22_00787	SMC_22_00787	Culvert	Newlands Road	В	Yes	MBRC Survey
24_00261	SMC_24_00261	Culvert	Newlands Road	В	Yes	MBRC Survey
26_00736	SMC_26_00736	Culvert	Powell Road	В	Yes	MBRC Survey
N/A	SMC_28_00908	Culvert	Powell Road	В	No	No
28_01916	SMC_28_01916	Culvert	Scurr Road	В	Yes	MBRC Survey
N/A	SMC_28_02077	Culvert	Scurr Road	В	No	No
30_00666	SMC_30_00666	Culvert	Scurr Road	В	Yes	MBRC Survey
32_00555	SMC_32_00555	Culvert	Scurr Road	N/A	Yes	MBRC Survey
34_03784	SMC_34_03784	Culvert	King Road	В	Yes	MBRC Survey
N/A	SMC_36_00481	Culvert	King Road	В	No	No
N/A	SMC_36_01650	Culvert	Powell Road	В	No	No
40_00207	SMC_40_00207	Culvert	Powell Road	В	Yes	MBRC Survey
N/A	SMC_42_00788	Culvert	Williams Road	В	No	No
42_02276	SMC_42_02276	Culvert	Pates Road	В	Yes	MBRC Survey
44_00868	SMC_44_00868	Culvert	Williams Road	В	Yes	MBRC Survey
N/A	SMC_46_01629	Culvert	King Road	В	No	No
48_01569	SMC_48_01569	Culvert	King Road	В	Yes	MBRC Survey

Structure ID	Waterway ID	Structure Type	Crossing Name	Priority*	Is Structure Modelled?	Data Availability/Source & Comments
54_00492	SMC_54_00492	Culvert	King Road	N/A	Yes	MBRC Survey
58_00453	SMC_58_00453	Culvert	Hamilton Road	В	Yes	MBRC GIS
58_00504	SMC_58_00504	Culvert	Railway	A	Yes	QR plans
58_00539	SMC_58_00539	Culvert	Beerburrum Road	A	Yes	Aurecon survey
N/A	SMC_60_00679	Culvert	Kirrang Drive	A	No	No, No culvert exists
64_01396	SMC_64_01396	Culvert	Mansfield Road	A	Yes	MBRC Survey
66_00151	SMC_66_00151	Culvert	Bigmor Drive	A	Yes	MBRC Survey
68_00227	SMC_68_00227	Culvert	Mansfield Road	A	Yes	MBRC GIS
70_00654	SMC_70_00654	Culvert	Mansfield Road	В	Yes	MBRC GIS
72_01331a	SMC_72_01331	Culvert	Mansfield Road	В	Yes	MBRC Survey
72_01331b	SMC_72_01331	Culvert	Mansfield Road	В	Yes	MBRC Survey

* As identified in the Data Assessment Report

Appendix B Overall Stability Results

Simulation	Total 1D Negative Depths	Total 2D Negative Depths	WARNINGs prior to simulation	WARNINGs during simulation	Volume Error (m3)	Final Cumulative ME	Whole Simulation Peak Cumulative ME
00001Y_0180m	0	15	15	15	-8348 or 0.0%	-0.05%	-0.08% at 6.90h
00001Y_0360m	0	0	15	0	-14339 or -0.1%	-0.07%	-0.10% at 9.88h
00001Y_0720m	0	1	15	1	-19821 or -0.1%	-0.08%	-0.10% at 15.88h
00002Y_0180m	0	7	15	7	-10115 or 0.0%	-0.04%	-0.07% at 6.89h
00002Y_0360m	0	1	15	1	-18352 or -0.1%	-0.06%	-0.08% at 9.88h
00002Y_0720m	0	1	15	1	-29140 or -0.1%	-0.08%	-0.09% at 15.88h
00005Y_0180m	0	5	15	5	-13371 or 0.0%	-0.04%	-0.06% at 6.88h
00005Y_0360m	0	12	15	12	-21218 or -0.1%	-0.05%	-0.06% at 9.88h
00005Y_0720m	0	5	15	5	-40133 or -0.1%	-0.08%	-0.08% at 15.89h
00010Y_0010m	0	2	15	2	-4067 or 0.0%	-0.03%	-0.05% at 4.05h
00010Y_0015m	0	1	15	1	-4955 or 0.0%	-0.03%	-0.05% at 4.14h
00010Y_0030m	0	43	15	43	-9057 or -0.1%	-0.05%	-0.07% at 4.38h
00010Y_0045m	0	10	15	10	-10139 or -0.1%	-0.05%	-0.06% at 4.63h
00010Y_0060m	0	37	15	37	-9153 or 0.0%	-0.04%	-0.06% at 4.88h
00010Y_0090m	0	22	15	22	-11614 or 0.0%	-0.04%	-0.06% at 5.40h
00010Y_0120m	0	22	15	22	-12262 or 0.0%	-0.04%	-0.06% at 5.88h
00010Y_0180m	0	1	15	1	-13983 or 0.0%	-0.04%	-0.05% at 6.89h
00010Y_0270m	0	23	15	23	-20377 or -0.1%	-0.05%	-0.06% at 8.38h
00010Y_0360m	0	17	15	17	-24456 or -0.1%	-0.05%	-0.06% at 9.89h
00010Y_0540m	0	27	15	27	-32992 or -0.1%	-0.06%	-0.06% at 12.88h
00010Y_0720m	0	5	15	5	-55729 or -0.1%	-0.09%	-0.09% at 17.00h
00010Y_1080m	0	3	15	3	-59735 or -0.1%	-0.08%	-0.08% at 22.05h
00010Y_1440m	0	17	15	17	-76360 or -0.1%	-0.09%	-0.10% at 27.88h
00010Y_2160m	0	10	15	10	-114166 or -0.1%	-0.11%	-0.15% at 26.10h
00010Y_2880m	0	42	15	42	-147657 or -0.1%	-0.14%	-0.16% at 19.64h
00010Y_4320m	0	24	15	24	-230489 or -0.2%	-0.19%	-0.21% at 72.03h
00020Y_0180m	0	64	15	64	-16594 or 0.0%	-0.04%	-0.05% at 6.89h
00020Y_0360m	0	11	15	11	-34678 or -0.1%	-0.06%	-0.06% at 15.00h
00020Y_0720m	0	4	15	4	-86508 or -0.1%	-0.11%	-0.11% at 19.52h
00050Y_0180m	0	530	15	530	-35678 or -0.1%	-0.07%	-0.08% at 6.88h
00050Y_0360m	0	10	15	10	-63738 or -0.1%	-0.09%	-0.09% at 15.00h
00050Y_0720m	0	1	15	1	-152664 or -0.2%	-0.16%	-0.16% at 20.00h
00100Y_0180m*	0	24	15	24	-42233 or -0.1%	-0.07%	-0.07% at 12.00h
00100Y_0360m*	0	87	15	87	-101737 or -0.1%	-0.12%	-0.12% at 15.00h

Simulation	Total 1D Negative Depths	Total 2D Negative Depths	WARNINGs prior to simulation	WARNINGs during simulation	Volume Error (m3)	Final Cumulative ME	Whole Simulation Peak Cumulative ME
00100Y_0720m*	0	12	15	12	-228657 or -0.2%	-0.20%	-0.20% at 20.00h
00100Y_EDS*	0	26	15	26	-66592 or -0.1%	-0.10%	-0.10% at 12.00h
00100Y_0010m	0	0	16	0	-3017 or 0.0%	-0.02%	-0.06% at 4.05h
00100Y_0015m	0	0	16	0	-3624 or 0.0%	-0.02%	-0.06% at 4.16h
00100Y_0030m	0	0	16	0	-7473 or 0.0%	-0.03%	-0.07% at 4.38h
00100Y_0045m	0	0	16	0	-11085 or 0.0%	-0.04%	-0.07% at 4.63h
00100Y_0060m	0	1	16	1	-10767 or 0.0%	-0.03%	-0.07% at 4.88h
00100Y_0090m	0	0	16	0	-19731 or 0.0%	-0.04%	-0.07% at 5.88h
00100Y_0120m	0	0	16	0	-19731 or 0.0%	-0.04%	-0.07% at 5.88h
00100Y_0180m	0	1	16	1	-30537 or -0.1%	-0.05%	-0.07% at 6.88h
00100Y_0270m	0	1	16	1	-46358 or -0.1%	-0.07%	-0.07% at 12.00h
00100Y_0360m	0	0	16	0	-61525 or -0.1%	-0.08%	-0.08% at 12.00h
00100Y_0540m	0	0	16	0	-112705 or -0.1%	-0.12%	-0.12% at 15.00h
00100Y_0720m	0	0	16	0	-172773 or -0.2%	-0.15%	-0.15% at 19.78h
00100Y_1080m	0	1	16	1	-211516 or -0.2%	-0.16%	-0.16% at 24.91h
00100Y_1440m	0	1	16	1	-219970 or -0.1%	-0.14%	-0.15% at 27.84h
00100Y_1800m	0	2	16	2	-216829 or -0.1%	-0.13%	-0.13% at 38.18h
00100Y_2160m	0	0	16	0	-206923 or -0.1%	-0.11%	-0.12% at 43.52h
00100Y_2880m	0	2	16	2	-242097 or -0.1%	-0.12%	-0.13% at 21.58h
00100Y_4320m	0	1	16	1	-279976 or -0.1%	-0.12%	-0.15% at 20.82h
00200Y_0120m	0	2	16	2	-34263 or -0.1%	-0.06%	-0.07% at 5.88h
00200Y_0180m	0	1	16	1	-46491 or -0.1%	-0.07%	-0.07% at 12.00h
00200Y_0360m	0	0	16	0	-126725 or -0.1%	-0.14%	-0.14% at 15.00h
00500Y_0120m	0	1	16	1	-57073 or -0.1%	-0.08%	-0.08% at 10.00h
00500Y_0180m	0	0	16	0	-80556 or -0.1%	-0.10%	-0.10% at 12.00h
00500Y_0360m	0	1	16	1	-191722 or -0.2%	-0.18%	-0.18% at 15.00h
01000Y_0120m	0	1	16	1	-80643 or -0.1%	-0.10%	-0.10% at 10.00h
01000Y_0180m	0	2	16	2	-113607 or -0.1%	-0.13%	-0.13% at 12.00h
01000Y_0360m	0	4	16	4	-253561 or -0.2%	-0.21%	-0.21% at 15.00h
02000Y_0120m	0	0	16	0	-111314 or -0.1%	-0.12%	-0.12% at 10.00h
02000Y_0180m	0	2	16	2	-152528 or -0.2%	-0.16%	-0.16% at 12.00h
02000Y_0360m	0	3	16	3	-328747 or -0.2%	-0.24%	-0.24% at 15.00h
PMF_0015m	0	3	16	3	-50782 or -0.1%	-0.07%	-0.08% at 4.20h
PMF_0030m	0	2	16	2	-146426 or -0.1%	-0.14%	-0.14% at 8.00h

Simulation	Total 1D Negative Depths	Total 2D Negative Depths	WARNINGs prior to simulation	WARNINGs during simulation	Volume Error (m3)	Final Cumulative ME	Whole Simulation Peak Cumulative ME
PMF_0045m	0	4	16	4	-281654 or -0.2%	-0.22%	-0.22% at 8.00h
PMF_0060m	0	3	16	3	-585636 or -0.4%	-0.35%	-0.35% at 10.00h
PMF_0090m	0	2	16	2	-1134463 or -0.5%	-0.51%	-0.51% at 10.00h
PMF_0120m	0	3	16	3	-1643673 or -0.6%	-0.63%	-0.63% at 10.00h
PMF_0150m	0	3	16	3	-2228046 or -0.7%	-0.74%	-0.74% at 12.00h
PMF_0180m	0	3	16	3	-2840973 or -0.8%	-0.84%	-0.84% at 12.00h
PMF_0240m	0	3	16	3	-3696781 or -1.0%	-0.97%	-0.97% at 12.00h
PMF_0300m	0	1	16	1	-4630662 or -1.1%	-1.06%	-1.06% at 13.48h
PMF_0360m	0	3	16	3	-4958171 or -1.1%	-1.09%	-1.09% at 14.02h
PMF_0720m_ GSDM	0	2	16	2	-5843507 or -1.1%	-1.06%	-1.06% at 18.08h
PMF_1440m	0	3	16	3	-5785472 or -0.8%	-0.85%	-0.86% at 28.23h
PMF_2160m	0	0	16	0	-6665510 or -0.8%	-0.79%	-0.80% at 41.32h
PMF_2880m	0	0	16	0	-7041982 or -0.7%	-0.72%	-0.73% at 45.73h
PMF_4320m	0	0	16	0	-7886653 or -0.6%	-0.64%	-0.72% at 37.44h
00100Y_EDS	0	0	16	0	-47502 or -0.1%	-0.07%	-0.07% at 12.00h
00100Y_EDS_S2	0	0	16	0	-37311 or -0.1%	-0.06%	-0.07% at 8.38h
00100Y_EDS_S3	0	0	16	0	-40523 or -0.1%	-0.06%	-0.07% at 8.38h
00100Y_EDS_S4	0	1	16	1	-72261 or -0.1%	-0.09%	-0.09% at 12.00h
00100Y_EDS_S5	0	0	16	0	-22218 or 0.0%	-0.03%	-0.04% at 8.38h
00100Y_EDS_S6	0	0	16	0	-29074 or 0.0%	-0.04%	-0.05% at 8.38h
00100Y_EDS_S7	0	7	16	7	-3462753 or -0.7%	-0.69%	-0.83% at 23.15h
00100Y_EDS_S8	0	1	16	1	-15095 or 0.0%	-0.02%	-0.04% at 8.38h
00100Y_EDS_S9	0	1	16	1	-16091 or 0.0%	-0.02%	-0.02% at 8.38h
00100Y_EDS_ S10	0	0	16	0	-44474 or -0.1%	-0.07%	-0.07% at 8.38h
00100Y_EDS_ S11	0	1	16	1	-48184 or -0.1%	-0.07%	-0.07% at 12.00h
00100Y_EDS_ S12	0	0	16	0	-44489 or -0.1%	-0.07%	-0.07% at 8.38h

* 100 year ARI 5 m grid model results

Appendix C EDS Culvert Discharge Graphs

PUM Culvert Discharge Results

PUM Culvert Discharge Results

Time (hours)

PUM Culvert Discharge Results

-10

PUM Culvert Discharge Results

PUM Culvert Discharge Results

PUM Culvert Discharge Results

PUM Culvert Discharge Results

aurecon

Aurecon Australia Pty Ltd ABN 54 005 139 873

Level 14, 32 Turbot Street Brisbane QLD 4000 Locked Bag 331 Brisbane QLD 4001 Australia

T +61 7 3173 8000
F +61 7 3173 8001
E brisbane@aurecongroup.com
W aurecongroup.com

Aurecon offices are located in: Angola, Australia, Botswana, China, Ethiopia, Hong Kong, Indonesia, Lesotho, Libya, Malawi, Mozambique, Namibia, New Zealand, Nigeria, Philippines, Singapore, South Africa, Swaziland, Tanzania, Thailand, Uganda, United Arab Emirates, Vietnam.

Appendix E Flood Maps – 100 Year ARI

Appendix E Flood Maps – 100 Year ARI

Figure E1: Peak Flood Level Map 100 Year ARI

in the accuracy of the data and has waived liability in respect of its use, Aurecon's study was undertaken strictly on the basis that the information that has been provided is accurate, complete and adequate. Aurecon takes no responsibility and disclaims all liability whatsoever fcr any loss or damage that MBRC may suffer resulting from any conclusions based on information provided to Aurecon, except to the extent that Aurecon expressly indicates in the associated report that it has verified the information to its satisfaction.

Date: 31/05/2012

Version: 0

RFD Detailed Modelling (PUM) Figure E2: Peak Flood Depth Map 100 Year ARI

Figure E3: Peak Flood Velocity Map 100 Year ARI

Figure E4: Peak Flood Stream Power Map 100 Year ARI

Figure E5: Peak Flood Hazard Map 100 Year ARI

Appendix F Model Sensitivity Analysis Maps

Appendix F Model Sensitivity Analysis Maps

Figure F1: Flood Level Difference between EDS and Selected Critical Storm Durations 100 Year ARI (S1)

Figure F2: Increase in Roughness Flood Level mpact 100 Year EDS (S2)

Figure F3: Structure Blockage Flood Level Impact 100 Year EDS (S3)

Figure F4: Increase in Rainfall Flood Level Impact 100 Year EDS (S4)

Figure F5: Increase in Downstream Boundary Flood Level Impact 100 Year EDS (S5)

Figure F6: Increase in Rainfall & Downstream Boundary Flood Level Impact 100 Year EDS (S6)

RFD Detailed Modelling (PUM) Figure F7: Dynamic Storm Tide Peak Flood Level 100 Year ARI (S7)

Projection: MGA Zone 56

Figure F8: Static Storm Tide Level Flood Level Impact - 100 Year EDS (S8)

2,500 m

Figure F9: Static Storm Tide and Climate Change Flood Level Flood Level Impact 100 Year EDS (S9)

2,500 m

Projection: MGA Zone 56 5,000 m Figure F10: Increase in Vegetation Flood Level Impact 100 Year EDS (S10)

2,500 m

Figure F11: Increase in Residential Development Flood Level Impact 100 Year EDS (S11)

Figure F12: Increase in Vegetation and Residential Development Flood Level Impact 100 Year EDS (S12)

Appendix G Hydrologic Modelling Details

Appendix G Hydrologic Modelling Details

A separate report for hydrologic model establishment was not created as part of the study; therefore this section has been included to describe the process undertaken in the hydrologic modelling.

Available data

The following data was made available for the hydrologic modelling:

- Base WBNM model supplied by Andrew Wiersma on 30 March 2011. This model was supplied with notes that C-value = 1.6; ARF = 1.0 and IFD file location in all runfiles will need to be amended
- Design rain gauge locations were also supplied by Andrew Wiersma on 30 March 2011
- Guidance on how climate change modelling is to be undertaken ie IFD coefficients to be increased by 12% (as per email correspondence from Hester van Zijl on 10 April 2012)
- Future development impervious values as supplied by Hester van Zijl on 2 May 2012
- Guidance for rainfall data setup was provided in the Worley Parsons (2010) Database Design Rainfall - Burpengary Pilot Project (Draft) report

Methodology

Model version

WBNM version 2010_000 was used to undertake the analyses.

The TUFLOW convert_to_ts1 utility (v 2009-10-AB) was used to convert the results to TUFLOW format.

Design event modelling

A separate .wbn file was created for each duration for each event (ARI). This was done in order to create separate output files for each event, which could then be used as input to the TUFLOW hydraulic model.

Five (5) design event rain gauge locations were adopted for the PUM minor basin as per the IFD data supplied.

The model results were then converted to .ts1 files for input to TUFLOW. Zero flow values were added to the end of each hydrograph. This was done for all WBNM model results, including the extreme events, PMP events and climate change events. Only the .loc files were used as input to the TUFLOW models.

Extreme event modelling

CRC-Forge was used to provide rainfall intensities. These were calculated for each of the five rainfall gauge locations adopted for the design events. For the 0045, 0090 and 0120 minute durations, no values are provided by CRC-Forge, therefore these were linearly interpolated between the 0030, 0060 and 0180 intensities.

PMP temporal patterns were applied to the extreme events. For the 0015, 0030, 0045, 0060, 0090, 0120, 0180 and 0360 minute events the temporal pattern for the Generalised Short Duration Method (GSDM) (BoM, 2003) was adopted. For the 1440, 2160, 2880 and 4320 minute events the temporal patterns from the coastal_avm_100 storms were adopted (as per the Generalised Tropical Storm Method (GTSMR), BoM 2003).

For the 0720 minute duration, both the GSDM and GTSMR temporal patterns were analysed. For the GTSMR, the times applying to the 1440 minute duration pattern were halved to create a 0720 minute pattern.

PMP event modelling

For the PMP event, a single storm was used across the entire model extents. The temporal patterns used for the extreme events were also used for the PMP events.

The methods set out in the GSDM (BoM, 2003) were used to provide rainfall intensities for the 0015, 0030, 0045, 0060, 0120, 0150, 0180, 0240, 0300 and 0360 minute events. The GTSMR methods (BoM, 2003) were used to provide intensities for the 1440, 2160, 2880 and 4320 minute events. For the 0720 minute event, a line of best fit was applied between the short and long duration intensities and the rainfall intensity was calculated to provide the best R² value to this line.

Key parameters used in the PMP analysis are provided in Table G1.

Table G1	Adopted PMP	Parameters	

Parameter/Method	Value
GSDM – initial depths	Rough surface for area = 1km ²
GSDM – EAF	1 as topography is below 1500m AHD
GSDM – MAF	0.85 (as per design events)
GTSMR – initial depths	Coastal summer values for area = 1km ²
GTSMR – TAF	1.505 – median value from region inspection
GTSMR – DAF	0.997 – median value from region inspection
GTSMR – EPW	88.525 – median value from region inspection

Climate change event analysis

For the climate change scenario (S4), the IFD data adopted for the design events was increased by 12%. No other changes were made to the EDS model setup.

Future landuse scenario analysis

For the future landuse scenario (S11), the revised fraction impervious values provided by MBRC were incorporated into the .wbn file. No other changes were made to the model setup.

Appendix H Landuse Polygon Review

Appendix H Landuse Polygon Review

Aurecon Australia Pty Ltd ABN 54 005 139 873 32 Turbot Street (Locked Bag 331 Brisbane QLD W aurecongroup.com 4001) Brisbane Queensland 4000 Australia

T +61 7 3173 8000 F +61 7 3173 8001 E brisbane@ap.aurecongroup.com

Projec	t: Mor	eton Bay	Flood Modelling		Reference: 211090
To:	Copy:	Circulate:	Name:	Organisation:	Location/Facsimile:
~			Hester van Zijl	MBRC	Hester.vanzijl@moretonba y.qld.gov.au
	V		Talia Campbell	Aurecon	campbellt@ap.aurecongro up.com
From:	Brar	ndon Bre	en	Date: 1 March 2011	Total pages: 6

IMPORTANT NOTICE The information contained in this document is CONFIDENTIAL and may also be LEGALLY PRIVILEGED, intended only for the addressee. If you are not the addressee, you are hereby notified that any use or dissemination of the information and any copying of the document is strictly prohibited. If you are not the addressee, please immediately notify us by telephone and we will arrange for the return of this document to us.

Subject: Land Use Polygon Review

Hester

We have undertaken a review of the land use polygons developed by SKM. As part of our land use review, the following land use polygon layers have been visually compared to the available aerial images:

- Roads MBRC_DigitisedRoads_2009AerialsOnly_MGA56 and AllMBRC_Roads_Merged_MGA56 •
- Buildings MBRC_Buildings_Updatedw2009Aerials_MGA56
- Footpaths MBRC_Footpaths_Updatedw2009Aerials_MGA56
- Vegetation MBRC Vegetation Existing 2009 MGA56 •
- Water bodies (creeks) MBRC_Waterbodies_Creeks_2009Aerials_MGA56 •
- Water bodies (rivers) MBRC_Waterbodies_Rivers_2009Aerials_MGA56 •
- Urban blocks - MBRC_UrbanBlock_2000SqmBlocks_MGA56

This review has shown that the above layers cover the MBRC region and have also been extended to cover the portion of the SCRC region which falls within the Pumicestone Passage minor basin.

This memo presents the findings of our review and our proposed approach in areas that discrepancies occur.

Project: Moreton Bay Flood Modelling	Reference: 211090
--------------------------------------	-------------------

Roads Land Use Layer

The SKM land use polygons partially include dirt roads (as shown in Figure 1 below). If the digitised road at location 1 is to be included in the roads land use layer, then in order to provide consistency throughout the model other dirt roads such as that in location 2 should also be digitised.

We think the inclusion of the dirt tracks is not likely to make a large impact on the modelling and therefore propose to provide consistency by excluding dirt roads from the modelling, rather than digitising all remaining dirt roads in the Pumicestone domain. The railway line, which has similar properties to a dirt road, has not been included in roads land use layer which suggests the dirt roads are not required.

Figure 1 Example of Digitised Dirt Roads

Project: Moreton Bay Flood Modelling	Reference: 211090
--------------------------------------	-------------------

Buildings Land Use Layer

Review of the SKM buildings land use layer shows that all buildings in the urban areas have been digitised; however there are some inconsistencies in the rural areas of the Pumicestone domain. The example in Figure 2 below shows a small cluster of buildings at location 1 have been included in the buildings layer and the larger buildings at location 2 have not been included.

We propose to add all large buildings and residential buildings into the buildings land use layer in order to provide consistency throughout the model.

Figure 2 Example of Digitised buildings

Project: Moreton Bay Flood Modelling	Reference: 211090
Tioject. Moreton bay hood Modeling	

Footpaths Land Use Layer

A review of the SKM footpaths layer has shown that they are generally well aligned and well defined. In a few locations, particularly on Bribie Island, some minor realignment, extension and addition of short sections to these polygons is proposed. We do not propose to make and any major changes to this layer. An example of minor adjustments is shown in Figure 3 with the proposed updated alignment in red.

Figure 3 Example of Digitised Footpaths

Project: Moreton Bay Flood Modelling	Reference: 211090

Vegetation Land Use Layer

A review of the SKM land use layer found the polygons to be accurate within the MBRC region. The portion of these polygons which have been digitised in the SCRC region have not picked up all the vegetated land. We propose to maintain the existing SKM land use layer, with the additional definition of vegetation layers in the SCRC area as shown in Figure 4 below – this figure shows the areas defined by SKM (green) and the additional definition we are proposing (red).

Figure 4 Example of Digitised Vegetation

Waterbodies (Creeks)

The waterbodies (creeks) were well defined in the SKM land use layer. In the SCRC portion of the Pumicestone Passage catchment we found three waterbodies which were not included. We propose to maintain the existing SKM land use layer, with the addition of these three waterbodies in the SCRC area.

Waterbodies (Rivers)

The waterbodies (rivers) are well defined in the SKM land use layers. We do not propose to make any changes to this layer.

Project: Moreton Bay Flood Modelling	Reference: 211090

Urban Blocks

A review of the urban blocks layer showed that all blocks under 2000m² within the MBRC region were defined. The urban blocks in the Beerburrum area were not included in this layer. We propose to maintain the existing SKM urban blocks land use layer, with the addition of urban blocks in Beerburrum (based upon cadastral data sourced from DERM on 25th February) as shown in Figure 5.

Figure 5 Example of Urban Blocks to be Included

Could you please review this memo and provide your comments regarding our proposed changes to the land use polygons?

Regards

1) Dec

Brandon Breen Civil Engineer Water

aurecon

Aurecon Australia Pty Ltd ABN 54 005 139 873

Level 14, 32 Turbot Street Brisbane QLD 4000 Locked Bag 331 Brisbane QLD 4001 Australia

T +61 7 3173 8000
F +61 7 3173 8001
E brisbane@aurecongroup.com
W aurecongroup.com

Aurecon offices are located in: Angola, Australia, Botswana, China, Ethiopia, Hong Kong, Indonesia, Lesotho, Libya, Malawi, Mozambique, Namibia, New Zealand, Nigeria, Philippines, Singapore, South Africa, Swaziland, Tanzania, Thailand, Uganda, United Arab Emirates, Vietnam.