Regional Floodplain Database
Hydrologic and Hydraulic Modelling

Hays Inlet (HAY) June 2012
Regional Floodplain Database
Hydrologic and Hydraulic Modelling
Hays Inlet (HAY)

Prepared For: Moreton Bay Regional Council
Prepared By: BMT WBM Pty Ltd (Member of the BMT group of companies)
Document Control Sheet

BMT WBM Pty Ltd

Document: R.B18104.008.01.P2_HAYS_Hydraulic_Model_Report_doublesided.doc

Project Manager: Richard Sharpe

Client: Moreton Bay Regional Council

Client Contact: Hester van Ziji

Client Reference: Regional Floodplain Database

Title: Regional Floodplain Database, Hydrologic and Hydraulic Modelling: Hays Inlet (HAY)

Author: Cecile Peille \ Richard Sharpe

Synopsis: Report outlining the study data, methodology and delivery of the detailed modelling of the Hays Inlet catchment, as part of Moreton Bay Regional Council's Regional Floodplain Database (Stage 2, Package 2) project.

Revision/Checking History

<table>
<thead>
<tr>
<th>REVISION NUMBER</th>
<th>DATE OF ISSUE</th>
<th>CHECKED BY</th>
<th>ISSUED BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25/05/2012</td>
<td>Draft</td>
<td>Richard Sharpe</td>
</tr>
<tr>
<td>1</td>
<td>15/06/2012</td>
<td>Cecile Peille</td>
<td>Richard Sharpe</td>
</tr>
</tbody>
</table>

DISTRIBUTION

<table>
<thead>
<tr>
<th>DESTINATION</th>
<th>REVISION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moreton Bay Regional Council</td>
<td>PDF</td>
</tr>
<tr>
<td>BMT WBM File</td>
<td>PDF + 3</td>
</tr>
<tr>
<td>BMT WBM Library</td>
<td>PDF</td>
</tr>
<tr>
<td></td>
<td>PDF</td>
</tr>
</tbody>
</table>
CONTENTS

Contents i
List of Figures iii
List of Tables iii

1 INTRODUCTION 1-1
 1.1 Scope 1-1
 1.2 Objectives 1-1
 1.3 General Approach 1-2
 1.4 Related Sub-Projects (RFD Stage 1 and Stage 2 Pilot) 1-2

2 AVAILABLE DATA 2-1

3 METHODOLOGY 3-1
 3.1 Data Review 3-1
 3.1.1 Infrastructure Data Assessment 3-1
 3.1.2 Calibration and Validation 3-1
 3.1.3 Hydrography Review 3-1
 3.2 Hydrologic Model 3-2
 3.3 Hydraulic Model 3-2
 3.3.1 Model Software 3-2
 3.3.2 Model Geometry 3-2
 3.3.3 Model Structures 3-3
 3.3.4 Landuse Mapping 3-3
 3.3.5 Model Boundaries 3-4
 3.4 Model Calibration and Verification 3-7
 3.5 Design Flood Events 3-7
 3.5.1 Critical Storm Duration Assessment 3-7
 3.5.2 Design Event Simulations 3-12
 3.6 Sensitivity Analysis 3-12
 3.6.1 Future Landuse Analysis 3-12
 3.6.2 Hydraulic Roughness Analysis 3-13
 3.6.3 Structure Blockage Analysis 3-13
CONTENTS

3.6.4 Climate Change and Downstream Boundary Condition Analysis 3-13

4 RESULTS AND OUTCOMES 4-1

4.1 Calibration and Verification 4-1

4.2 Design Flood Behaviour 4-1

 4.2.1 Model Results 4-1

 4.2.2 Digital Data Provision 4-2

4.3 Sensitivity Analysis 4-2

 4.3.1 Future Landuse Analysis 4-2

 4.3.2 Hydraulic Roughness Analysis 4-3

 4.3.3 Structure Blockage Analysis 4-3

 4.3.4 Climate Change and Downstream Boundary Conditions Analysis 4-3

4.4 Model Limitations 4-3

5 CONCLUSION 5-1

6 REFERENCES 6-1

APPENDIX A: INFRASTRUCTURE DATA ASSESSMENT REPORT A-1

APPENDIX B: HYDROGRAPHY REVIEW REPORT B-1

APPENDIX C: CALIBRATION AND VALIDATION REPORT C-1

APPENDIX D: MODELLING QUALITY REPORT D-1

APPENDIX E: FLOOD MAPS – 100 YEAR ARI E-1

APPENDIX F: MODEL SENSITIVITY ANALYSIS MAPS F-1
LIST OF FIGURES

Figure 3-1 Hydraulic Model Layout 3-5
Figure 3-2 Landuse Mapping – Existing Conditions 3-6
Figure 3-3 Critical Duration Assessment Peak Flood Level Difference – 10 Year ARI 3-9
Figure 3-4 Critical Duration Assessment Peak Flood Level Difference – 100 Year ARI 3-10
Figure 3-5 Critical Duration Assessment Peak Flood Level Difference – PMF 3-11

LIST OF TABLES

Table 3-1 Hydraulic Model Landuse Categorisation 3-3
Table 3-2 Downstream Boundary Water Level 3-4
Table 3-3 Critical Storm Duration Selection 3-8
1 INTRODUCTION

Moreton Bay Regional Council (MBRC) is currently undertaking Stage 2 of developing the Regional Floodplain Database (RFD). The RFD includes the development of coupled hydrologic and hydraulic models for the entire local government area (LGA) that are capable of seamless interaction with a spatial database to deliver detailed information about flood behaviour across the region.

Stage 2 includes the detailed hydrologic and hydraulic modelling of 5 packages, which cover 11 catchments in the MBRC LGA. This report discusses the study data, methodology and results for Stage 2, Package 2 of the RFD (i.e the detailed hydrologic and hydraulic modelling) for the Hays Inlet catchment. Furthermore, this stage will form the basis of Stage 3 of the RFD, which aims to analyse the results of the detailed modelling for the purposes of understanding and managing flood risk in the MBRC LGA.

1.1 Scope

The detailed models of the Hays Inlet catchment will provide MBRC with an enhanced understanding of the flood behaviour in the catchment for a large range of flood events, from the 1 year Average Recurrence Interval (ARI) event to the Probable Maximum Flood (PMF). The detailed model was developed from a pre-existing broad scale model that was developed by MBRC as part of the RFD. The following primary alterations were made to convert the broad scale model to a detailed model:

- The model computational grid resolution was refined from 10m to 5m;
- The latest 2009 LiDAR (Light Detection And Ranging) topographic data was used, incorporating terrain modifiers to enhance the capture of road embankments and stream lines in the Digital Elevation Model (DEM);
- Additional hydraulic structures were included in the model; and
- Utilisation of detailed land use delineation (developed as part of Stage 1, but not included in broadscale models).

A broad range of design flood events were simulated, as well as a number of sensitivity analyses which investigated the influence of various parameters and conditions on model results. The model results provide detailed flood information such as levels, depths, velocities, hazard, flood extents and the time at which flooding occurs.

1.2 Objectives

Key objectives of this study are as follows:

- Utilise the existing broadscale model to develop a detailed and dynamically linked two-dimensional and one-dimensional (2D/1D) hydrodynamic model of the Hays Inlet Catchment using input data that were determined and provided by MBRC or other consultants; and
- Provision of all relevant flood information obtained from the modelling, which will form the base input data for Stage 3 of the RFD.
1.3 General Approach

The general approach for this study is summarised as follows:

- Review existing broad scale WBNM hydrologic model and results;
- Review existing broad scale TUFLOW modelling;
- Refine the TUFLOW modelling to include a refined grid size and any additional structure and topographical information;
- Investigate the feasibility of calibrating and/or verifying the combined WBNM and TUFLOW models using two historical events. There was insufficient historical information available for this task, therefore calibration was not undertaken;
- Undertake a critical storm duration assessment for the 10 year ARI event, 100 year ARI event and the PMF;
- Simulate a large range of design flood events (1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000 year ARI events and PMF events) for up to three selected critical durations;
- Assess model sensitivity to future landuse patterns, Manning’s ‘n’, structure blockage, climate change and downstream boundary conditions;
- Provide a concise report describing the adopted methodology, study data, model results and findings. The emphasis of the RFD project is on digital data management. Therefore only the 100 year ARI event was mapped in this report; and
- Compilation of models and model outputs for provision to MBRC.

1.4 Related Sub-Projects (RFD Stage 1 and Stage 2 Pilot)

The following RFD sub-projects provide input data and/or methodologies for the Hays Inlet Stage 2 models:

- **1D – Hydrologic and Hydraulic Modelling (Broadscale)**, sub-project 1D defined model naming conventions and model protocols to be used in this sub-project (BMT WBM, 2010);
- **1E – Floodplain Topography (2009 LiDAR) including 1F, 2E, 2I**, sub-project 1E provided the topographic information, such as model Z points layer and digital elevation models (DEM). This was achieved using a bespoke DEM tool developed for the RFD (Worley Parsons, 2010a);
- **1G – Hydrography (MBRC)**, sub-project 1G supplied the subcatchment delineation of the catchment including stream lines and junctions (used in the WBNM model);
- **1H – Floodplain Landuse**, sub-project 1H delivered the current percentage impervious cover (utilised in the hydrologic model) and the roughness Manning’s ‘n’ values (utilised in the hydraulic model) (SKM, 2010);
- **1I – Rainfall and Stream Gauges Information Summary (MBRC)**, sub-project 1l summarised available rainfall and stream gauge information for the study area;
- **2C – Floodplain Structures (Culverts)**, sub-project 2C supplied the GIS layer of the culverts to be included in the model (Aurecon, 2010). A TUFLOW-specific MapInfo file was provided,
however appropriate model linkages between the culvert data and the 2D domain had to be established;

- **2D - Floodplain Structures (Bridges)**, sub-project 2D provided a GIS layer of the major bridges and foot bridges (Aurecon, 2010). A TUFLOW-specific MapInfo file was provided;

- **2F – Floodplain Structures (Trunk Underground Drainage)**, sub-project 2F provided trunk underground drainage information;

- **2G - Floodplain Structures (Basins)**, sub-project 2G consolidated and surveyed the existing basin information in the study area (Aurecon, 2010);

- **2I - Floodplain Structures (Channels)**, sub-project 2I identified channels within the catchment (Aurecon, 2010);

- **2J – Floodplain Landuse (Historic and Future)**, sub-project 2J defined the historic and future percentage impervious cover (utilised in the hydrologic model) and the roughness (Manning’s ‘n’) values representing landuse for historical events (utilised in the hydraulic model) (SKM, 2010);

- **2K – Flood Information Historic Flooding**, sub-project 2K collected and surveyed flood levels for the historic May 2009 and February 1999 flood event (GHD, 2010);

- **2L – Design Rainfall and Infiltration Loss**, sub-project 2L developed the hydrologic models for the catchment and provided the design rainfall hydrographs for the pilot study (Burpengary Creek catchment) TUFLOW models (Worley Parsons, 2010b). A similar methodology was adopted for the Hays Inlet catchment;

- **2M – Boundary Conditions, Joint Probability and Climate Risk Scenarios**, sub-project 2M defined the boundary conditions and provided recommendations in regards to joint probability (i.e. occurrence of storm surge in combination with river flooding events, or river flooding in combination with local tributary flooding). This project also recommended certain sea level rise and rainfall intensity values to assess Climate Risk Scenarios (SKM, 2012a); and

- **2N – Floodplain Parameterisation**, sub-project 2N provided recommendations of the floodplain parameters, such as a range of values for various impervious percentages for various landuse types (i.e. residential or rural landuse, dense vegetation), a range of values for various roughness types (i.e. long grass, dense vegetation) and structure losses (SKM, 2012b).
2 AVAILABLE DATA

The following provides a list of the data available for this study:

- **Floodplain Topography** – MBRC provided a DEM and Z points that were generated using a tool that was developed and run by Worley Parsons. The DEM resolution was 2.5m (half the 2D computational grid resolution). The topography is based on LiDAR data collected in 2009 and provided by the Department of Environment and Resource Management (DERM);

- **Hydrography (MBCR)** – Catchment delineation and hydrology model dataset provided by MBRC;

- **Floodplain Landuse (Current and Future)** – Polygon data for 9 different landuse categories established as part of Stage 1;

- **Floodplain Structures (Culverts and Bridges)** – As-constructed bridge plans for selected minor roads in MBRC LGA (provided by MBRC where available). Additional structure survey data, as undertaken by MBRC when no structure data was available. State controlled roads and minor road GIS layers provided by MBRC;

- **Design Rainfall** – Amendment of WBNM models, development of design simulations and provision of design rainfall hydrographs (from the 1 year ARI to the PMF);

- **Boundary Conditions, Joint Probability and Climate Risk Scenarios** – Report with recommendations for boundary conditions, joint probability and climate change scenarios; and

- **Floodplain parameterisation** information, specifically about impervious percentages for various landuse types, roughness types and structure losses.
3 METHODOLOGY

3.1 Data Review

A number of data reviews were undertaken by BMT WBM. These reviews concern:

- The infrastructure data within the catchments;
- The historical flooding information of the catchments; and
- The broadscale subcatchment delineations.

The review and analysis of these data was compiled into three reports and issued to MRBC prior to completion of a draft detailed model. A summary of the data review reports is described below.

3.1.1 Infrastructure Data Assessment

This report reviewed the available infrastructure data provided by MBRC and the Department of Transport and Main Roads (DTMR) and identified any infrastructure data that needed to be collected for the detailed modelling of the Hays Inlet Catchment. Furthermore, this required data was prioritised into two categories: Priority A data (data which is critical for a high quality model) and Priority B data (all other data for which assumptions can be used and still achieve a relatively high quality model).

The key findings from this report include:

- 2 DTMR bridge and culvert structures were prioritised as category A, along with 2 additional crossings;
- 4 DTMR bridge and culvert structures were prioritised as category B, along with 10 additional crossings; and
- 2 detention basins identified where embankment heights are required.

A full copy of this report is provided in Appendix A.

3.1.2 Calibration and Validation

The available information on historical flooding was provided by MBRC and reviewed as part of this report, along with the collection of gauge data from the Bureau of Meteorology (BoM). The feasibility of using historic flood events for calibrating the Hays Inlet model was assessed. The assessment concluded that there is insufficient data available in the catchment to perform calibration and validation to historical flood events. A full copy of this report is provided in Appendix C.

3.1.3 Hydrography Review

The subcatchment delineation completed as part of Stage 1 was reviewed; a copy of the report letter is provided in Appendix B. The review recommended refinement of the subcatchment delineation in some locations (in the upper reaches of the catchment). MBRC adopted most of these recommendations, and re-issued the subcatchment delineation.
3.2 **Hydrologic Model**

The existing hydrological WBNM model for the Hays Inlet catchment was reviewed and updated using relevant data, utilising the WBNM 2010 beta version. The WBNM software was nominated by MBRC as the hydrologic software package for the RDF, and was used to model the design events (utilising existing landuse) and a future landuse scenario.

The subcatchment delineation and hydrology model were supplied by MBRC. Detailed hydrologic model parameters, such as adopted losses, design gauge locations and Intensity Frequency Duration (IFD) data, was based on methods adopted for the Burpengary Stage 2 Pilot Study and SKM (2010). The following methods were used for definition of design storms:

- 1 year ARI to 100 year ARI – AR&R (The Institution of Engineers Australia, 2001) was used to define rainfall depths and rainfall temporal patterns for storm events from 1 year ARI to 100 year ARI;
- 200 year ARI to 2000 year ARI – CRC Forge was used to define rainfall depths and temporal patterns were based on the temporal patterns adopted for the PMF events; and
- PMF – The Generalised Short Duration Method (GSDM) and the Revised Generalised Tropical Storm Method (GTSMR) were used, depending on the storm duration, to determine the Probable Maximum Precipitation and rainfall temporal patterns.

The flows derived from the hydrologic model were used as inflow to the hydraulic model.

3.3 **Hydraulic Model**

3.3.1 **Model Software**

Because of the complex nature of floodplain flow patterns in urban and rural catchments, MBRC has adopted TUFLOW, a dynamically-linked 2D/1D hydrodynamic numerical model, to predict the flood behaviour of the catchments in their LGA. TUFLOW has the ability to:

- Accurately represent overland flow paths, including flow diversion and breakouts (2D modelling);
- Model the waterway structures of the entire catchment with a relatively high level of accuracy (1D or 2D modelling);
- Dynamically link components of the 1D models (i.e. culverts) to any point in the 2D model area, and
- Produce high quality flood map output (i.e. flood extent, flood levels, depths, velocities, hazard and stream power), which are fully compatible with Geographic Information Systems (GIS).

3.3.2 **Model Geometry**

The TUFLOW model was based on a set of Z points provided by MBRC, with a computational grid resolution of 5m. The origin of the Z points was used to set the origin of the 2D domain, and 2D domain orientation was set to zero (or horizontal; i.e. no rotation).

The elevation information was based on 2009 ALS data that was processed using a bespoke tool (processed by Worley Parsons). Stream and road modifiers were developed and supplied to MBRC.
3.3.3 Model Structures

The Hays Inlet catchment is highly urbanised, and contains a number of engineered open drains and canals. These waterways were represented in the 2D domain using break line terrain modifiers, with invert levels inspected from a combination of the supplied DEM and engineering drawings. Culvert crossings were typically represented in the model as 1D structures, with flow over these structures modelled within the 2D domain. Bridges and footbridges were represented in the 2D domain (using TUFLOW layered flow constriction features). The hydraulic structure details were provided by MBRC in the form of engineering drawings or digital data derived from a survey.

The adopted exit and entry loss coefficients applied to the hydraulic structures were based on values reported in SKM (2012b). Structure locations are shown on Figure 3-1.

3.3.4 Landuse Mapping

Landuse mapping was used to define the spatially varying hydraulic roughness within the hydraulic model. In total, ten different types of landuse were mapped and provided by MRBC, together with associated Manning’s ‘n’ values as presented in Figure 3-2 and Table 3-1.

<table>
<thead>
<tr>
<th>Landuse Type</th>
<th>Manning’s ‘n’ Roughness Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roads/Footpaths</td>
<td>0.015</td>
</tr>
<tr>
<td>Waterbodies</td>
<td>0.030</td>
</tr>
<tr>
<td>Low Grass/Grazing*</td>
<td>Ranging from 0.025 at 2 m depth to 0.25 at 0m depth</td>
</tr>
<tr>
<td>Crops</td>
<td>0.040</td>
</tr>
<tr>
<td>Medium dense vegetation*</td>
<td>Ranging from 0.075 up to a depth of 1.5m and 0.15 above 1.5m</td>
</tr>
<tr>
<td>Reeds</td>
<td>0.08</td>
</tr>
<tr>
<td>Dense vegetation*</td>
<td>Ranging from 0.09 up to a depth of 1.5m to 0.18 above 1.5m</td>
</tr>
<tr>
<td>Urban Block (> 2000m²)</td>
<td>0.300</td>
</tr>
<tr>
<td>Buildings</td>
<td>1.000</td>
</tr>
</tbody>
</table>

*Depth varying (linear) Manning’s ‘n’ roughness was applied.

Three of the landuse categories used a depth varying Manning’s roughness. This allows the Manning’s roughness to be adjusted depending on the depth of water flowing over a surface. For example, when there is a small depth of water over grass, the resistance is high, and thus the Manning’s roughness should be high. However, as the water gets deeper, the resistance of the grass is less, thus the Manning’s roughness should be low. The depth varying Manning’s roughness allows this to be represented.

In highly developed blocks, larger than 2000m², the urban block category was used (Manning’s ‘n’ of 0.3). For areas outside the high density residential development, an individual building layer, showing the footprint of the building was used (Manning’s ‘n’ of 1.0).
3.3.5 Model Boundaries

The results of the WBNM hydrologic model were used to generate rainfall inflows for the hydraulic model for all design events, as discussed in Section 3.2. The inflows were applied to the 2D domain using a flow-time source boundary spread over each subcatchment. This technique applies the inflow at the lowest grid cell in a subcatchment initially and then subsequently to all wet cells in that subcatchment.

The downstream boundary conditions, joint probability and climate change scenarios were based on recommendations in SKM (2012a). A static flood level was applied at the downstream boundary utilising the mean high water spring (MHWS) for all design events (see Table 3-2). Sensitivity tests were undertaken for the downstream boundary (refer to Section 3.6).

<table>
<thead>
<tr>
<th>Description</th>
<th>Level (mAHD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean High Water Spring Tide (MHWS)</td>
<td>0.82</td>
</tr>
</tbody>
</table>
3.4 Model Calibration and Verification

Where possible, MBRC have sought to calibrate and verify the models in their LGA to historical flood events. No calibration or verification was undertaken on the Hays Inlet catchment due to insufficient historical records on flood levels, as outlined in Section 3.1.2. However the adopted model parameters are based on a consistent set of model parameters that were applied over the entire MBRC LGA. This consistent parameter set was determined in view of the calibration of a number of other models in the region. Therefore the model parameters that were applied are effectively verified through surrogate model calibration and verification.

3.5 Design Flood Events

This section describes the design storm conditions that were used in the hydrodynamic modelling. Design storm events are hypothetical events that are used to estimate design flood conditions. They are based on probability of occurrence, usually specified as an Average Recurrence Interval (ARI).

3.5.1 Critical Storm Duration Assessment

An assessment of critical storm durations (storm duration/s that results in the highest peak flood level) was undertaken. The critical durations were selected based on the hydraulic model results, rather than the hydrological model results. This means that the selected critical durations were selected based upon the maximum flood levels rather than flows. Separate assessments were undertaken for three representative flood events;

- 10 year ARI event, to represent smaller events (1, 2, 5 and 10 year ARI events);
- 100 year ARI event, to represent larger events (20, 50 and 100 year ARI events); and
- Probable maximum flood (PMF), to represent extreme events (200, 500, 1000 and 2000 year ARI events and the PMF).

To determine the critical storm durations for the Hays Inlet model, the following methodology was adopted:

1. Hydrologic and hydraulic modelling of a range of storm durations (1hr, 3hr, 6hr, 12hr, 24hr and 48hr) for the 10 year, 100 year and PMF events; 5 hour storm duration was also tested for the PMF event.
2. Mapping of the peak flood level results for the ‘maximum envelope’ of all the storm durations for the three representative events.
3. Mapping of the peak flood level results for the ‘maximum envelope’ of selected storm durations for the three representative events.
4. Difference comparison between the mapped peak flood levels for selected critical durations and the results accounting for all storm durations.
5. The critical duration combination resulting in the lead difference compared with the mapping of the full envelope of durations was adopted. Selection of the critical durations was based on the storm durations generating the highest flood levels across the most widespread and developed areas.
A summary of the selected critical storm durations for all events assessed is outlined in Table 3-3. The difference comparison for the 100 year ARI peak flood levels (as described in step 4 above) is shown in Figure 3-3 to Figure 3-5. The figures illustrate that the selected critical durations generally capture the peak flood levels across the site in developed areas. There are some localised areas where flood levels are under predicted.

<table>
<thead>
<tr>
<th>Assessment Event</th>
<th>Selected Critical Durations</th>
<th>Adopted Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 year ARI</td>
<td>1, 3 and 6 hour storm</td>
<td>1, 2, 5 and 10 year ARI</td>
</tr>
<tr>
<td>100 year ARI</td>
<td>1, 3 and 6 hour storm</td>
<td>20, 50 and 100 year ARI</td>
</tr>
<tr>
<td>Probable Maximum Flood</td>
<td>1, 3 and 5 hour storm</td>
<td>200, 500, 1000, 2000 year ARI and PMF</td>
</tr>
</tbody>
</table>

This process was undertaken in consultation with MBRC, as their knowledge on local catchment and development issues was a factor in the decision-making and selection of the critical durations.
3.5.2 Design Event Simulations

The Hays Inlet model was simulated for a range of ARI and storm durations and a 100 Year Embedded Design Storm (EDS). MBRC requested the use of a single EDS which synthesises a range of storm duration hyetographs into one representative design hyetograph. The EDS is useful for general investigations into changes in model parameters and catchment characteristics, as it reduces the number of model runs required (no need to run multiple storm durations).

MBRC advised that the 100 year ARI 15 minute in 270 minute Embedded Design Storm was to be adopted. The adopted EDS storm was used as the base design storm for the sensitivity analyses.

In summary, the Hays Inlet model was simulated for the following design events:
- The 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000 year ARI events and the PMF events for the selected critical storm durations; and
- The 100 year Embedded Design Storm (EDS) for a 15 minute in 270 minute envelope storm.

3.6 Sensitivity Analysis

3.6.1 Future Landuse Analysis

Three future landuse scenarios were assessed using future landuse data provided by MBRC. The future scenarios did not include a change in rainfall intensities or sea level rise due to climate change. The 100 year EDS flood event was used.

The hydrologic model utilises a ‘fraction impervious’ parameter which described the proportion of each subcatchment where water is not able to infiltrate, i.e. there are no rainfall losses on paved surfaces. If the fraction impervious increases, there will be more rainfall runoff and quicker concentration of flows. The fraction impervious in each subcatchment of the WBNM model was updated to reflect the future landuse scenario provided by MBRC.

Landuse is defined in the hydraulic model through the materials layer. This information covers the entire hydraulic model extent and describes landuse and the Manning’s ‘n’ roughness values associated with each type of landuse. The materials layer was updated to reflect the future landuse scenario (change in vegetation density).

The landuse scenarios simulated included:
- **Future Landuse Scenario 1**: Investigated the impact of increased vegetation in the floodplains. This involved changing the ‘medium dense vegetation’ material class to a ‘high dense vegetation’ class and changing the ‘low grass/grazing’ material class to a ‘medium dense vegetation’ class.
- **Future Landuse Scenario 2**: Investigated the impact of an increase in residential development. The hydrology model was updated with forecast future development (provided by MBRC) to estimate future inflows for the TUFLOW model.
- **Future Landuse Scenario 3**: Investigated the impact of an increase in residential area and increased vegetation in floodplains. This scenario combines future landuse scenarios 1 and 2.
3.6.2 Hydraulic Roughness Analysis

The sensitivity of the model to landuse roughness (Manning’s ‘n’) parameters was undertaken with the 100 year EDS design event. All Manning’s ‘n’ values in the 2D domain were increased by 20%.

3.6.3 Structure Blockage Analysis

A blockage scenario was run to simulate the effects of waterway crossing (culverts) becoming blocked during a flood event. This is a reasonably common occurrence and is the result of debris being washed into the waterways during a flood. Recent storm event showed that blockages are generally caused by debris, or larger items, such as tree stems, wood planks, shopping trolleys or even cars. Blockages reduce the capacity for water to flow through stormwater infrastructure and force water out of the channel, often increasing overland flooding.

A moderate blockage scenario was adopted from the SKM Floodplain Parameterisation report (2012b), and includes:

- A full blockage is applied if the culvert diagonal is less than 2.4m; and
- A 15% blockage is applied if the culvert diagonal is greater than 2.4m.

3.6.4 Climate Change and Downstream Boundary Condition Analysis

A climate change and storm tide assessment investigated the possible impact of a storm tide and projected increases in sea level rise and rainfall intensity on flooding in the catchment. In total 6 scenarios were assessed:

- **Climate Change Scenario 1:** Investigated the impact of an increase in rainfall intensity of 20% (as per SKM (2012a) Boundary Conditions, Joint Probability and Climate Change Report);
- **Climate Change Scenario 2:** Investigated the impact of an increased downstream boundary of 0.8m due to predicted sea level rise;
- **Climate Change Scenario 3:** Investigated the impact of an increase in rainfall intensity and an increased downstream boundary. This scenario combines climate change scenarios 1 and 2;
- **Storm Tide Scenario 1:** Modelled a dynamic storm tide. No rainfall is applied and a dynamic storm tide (100 year current) boundary was applied (from the Storm Tide Hydrograph Calculator spreadsheet, developed by Cardno Lawson Treloar (2010). The MBC-004 reference point was used);
- **Storm Tide Scenario 2:** Investigated the impact of a 100 year static storm tide level (2.2mAHD) with concurrent 100 year EDS rainfall event; and
- **Storm Tide Scenario 3:** Investigated the impact of an increase in rainfall and an increase in sea level rise. An increase in rainfall of 20% was applied combined with a static storm tide level (100 year GHG) + 0.8m, resulting in a final static storm tide level of 2.5mAHD.
4 RESULTS AND OUTCOMES

4.1 Calibration and Verification

As discussed in Section 3.4, there were insufficient historical records of flood levels to calibrate the model. As such, there are no calibration results for this catchment. However the adopted parameters have undergone substantial calibration in adjoining catchments and are therefore considered suitable (SKM, 2012b).

4.2 Design Flood Behaviour

4.2.1 Model Results

The following data were output by the model at 20 minute intervals as well as the peak values recorded during each simulation:

1. Flood levels (H flag);
2. Flood Depth (D flag);
3. Flood Velocity (V flag);
4. Depth Velocity Product (Z0 flag);
5. Flood Hazard based on NSW Floodplain Development Manual (DIPNR, 2005) (Z1 flag);
6. Stream Power (SP flag); and
7. Inundation Times (no flag required).

The maximum velocity was used in combination with a ‘Maximum Velocity Cutoff Depth’ of 0.1m. Consequently, the model result files plot the maximum velocity for depths greater than 0.1m; for depths of less than 0.1m the velocity at the peak level is recorded in TUFLOW’s output file. This approach is recommended so as to exclude any high velocities that can occur as an artefact of the modelling during the wetting and drying process.

TUFLOW can provide output relevant to the timing of inundation. In particular:

- The time that a cell first experiences a depth greater than the depth(s) specified; and
- The duration of time that a cell is inundated above the depth(s) specified.

A ‘Time Output Cutoff Depths’ of 0.1m, 0.3m and 1m, were selected. This selection provides further flood information in the catchment; e.g.:

- Establishing when areas are inundated with shallow depths of 0.1m;
- Considering pedestrian and vehicle safety (flood depth between 0.1 and 0.3m); and
- The duration and/or time of inundation for significant flood depths of 1m and more throughout the catchment.
This information can assist in emergency planning by highlighting which areas of the catchment are inundated early in the flood event and also highlighting which regions may be isolated for long durations.

The model results were used to prepare a set of design flood maps, including inundation maps, peak flow velocity maps, hazard maps and stream power maps for the 100 year ARI flood event. The flood conditions on these maps were derived using the envelope (maximum) of all storm durations used in the critical duration analysis. Flood maps are only provided for the 100 year ARI design event because the focus of this project is on digital data, rather than the provision of flood maps. A description of the digital data provided to MBRC for incorporation into their RFD is summarised in Section 4.2.2. The flood maps of the 100 year ARI design storm event are presented in Appendix E.

4.2.2 Digital Data Provision

The Regional Floodplain Database is focused on structuring model input and output data in a GIS database. Therefore, all model input and output are being provided to MBRC at the completion of the study. The data includes all model files for the design events (for each storm duration) and sensitivity analyses.

In addition, post processing batch files were provided. The batch files were used to:

- Envelope (derive the maximum of) the critical duration runs and combine these into one file; and
- Convert the envelope file into ESRI readable ascii grids (*.asc).

4.3 Sensitivity Analysis

The 100 year Embedded Design Storm (100 year ARI 15 minute in 270 minute) was used as a base case for the sensitivity analysis. A comparison of this event with the 100 year design flood event with selected critical durations (1, 3 and 6 hour) is provided in Appendix F. The results indicate that there is less than 100mm difference in flood levels across the majority of the floodplain between these two design events.

4.3.1 Future Landuse Analysis

The upstream part of the Hays Inlet catchment is predominantly vegetated with some residential areas along the main flow path, the centre part is mostly urbanized and the downstream part is a mixture of water bodies, reeds, grazing and medium dense vegetation. Peak flood levels are generally insensitive to an increase in residential development with changes in peak flood levels being less than 100mm across most of the floodplain, apart from a few areas in the upstream part of the catchment where peak flood level impacts are approximately 400mm.

An increase in vegetation has no significant impact in peak flood levels across the majority of the floodplain. Some isolated areas, such as the Hays Inlet Conservation Park and the North Lake environmental Park, are more sensitive to an increase in vegetation with peak flood levels impacts being approximately 200mm.
4.3.2 **Hydraulic Roughness Analysis**

Increasing Manning’s ‘n’ by 20% has resulted in no changes in peak flood level of more than 100mm across most of the floodplain, apart from some areas of dense vegetation where the impact is approximately 250mm.

4.3.3 **Structure Blockage Analysis**

As expected, the structure blockage analysis has shown that structure blockages cause an increase in peak flood levels in the vicinity of the blocked structures, and in some areas there has been a decrease in flood levels downstream of a structure. These flood level increases are significant in some places, being over 0.5m.

4.3.4 **Climate Change and Downstream Boundary Conditions Analysis**

Neither increased sea levels due to climate change or high tidal surges have a significant effect on flood levels in the upstream part and in the middle part of the catchment in Hays Inlet. As expected, significant increase in levels are noticeable in the downstream part of the catchment due to the low-lying elevation of this area. However these peak level impacts are restricted to non-developed areas, where the landuse is predominantly a mixture of water bodies and reeds.

Increases in rainfall intensity mostly result in changes in flood levels of 100mm to 500mm. These increases in flood level due to increased rainfall intensity are further exacerbated when combined with a tidal surge and sea level rise altogether. In this case, there are significant increases in flood levels throughout the catchment.

4.4 **Model Limitations**

Watercourses within the Hays Inlet catchments were represented in the 2D domain, for which the grid resolution is limited to 5m. This may not allow adequate representation of the channel conveyance, particularly for smaller, more frequent flood events. In some instances this limitation may lead to the model over or underestimating conveyance in the watercourses. The extent of this over or underestimation will vary according to local topographic factors.
5 **CONCLUSION**

A 5m grid resolution TUFLOW model of the Hays Inlet catchment was developed for MBRC. The model was set up in a manner prescribed by MBRC specifically for the RFD project to ensure a consistent approach across the whole LGA and to enable the model and model outputs to be integrated into MBRC’s Regional Floodplain Database. The main focus of the project is delivery of the model and its outputs in digital format, therefore only a selection of results have been presented in this report. The outcomes of this work will be used in stage 3 of the RFD to analyse and assist with managing flood risk in the Hays Inlet catchment.
6 REFERENCES

Aurecon (2010): Floodplain Structures Regional Floodplain Database Moreton Bay Regional Council

BMT WBM, 2010: Hydraulic Modelling (Broadscale) Regional Floodplain Database Stage 1 Sub-project 1D

Department of Infrastructure, Planning and Natural Resources - New South Wales (DIPNR), 2005: Floodplain Development Manual the management of flood liable land

GHD (2010): Moreton Bay Regional Council Regional Floodplain Database Sub-project 2K Historic Flood Information

SKM (2010): MBRC Regional Floodplain Database Existing, Historic and Future Floodplain Land Use

SKM (2012a): MBRC Regional Floodplain Database Boundary Conditions, Joint Probability & Climate Change

SKM (2012b): MBRC Regional Floodplain Database Floodplain Parameterisation

The Institution of Engineers Australia (2001): Australian Rainfall and Runoff

Worley Parsons (2010a): Regional Floodplain Database Floodplain Terrain

Worley Parsons (2010b): Design Rainfall - Burpengary Pilot Project