Table of amendments

<table>
<thead>
<tr>
<th>Date of adoption and effective date</th>
<th>Planning scheme policy version number</th>
<th>Amendment type</th>
<th>Summary of amendments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Planning scheme policy – Flood Hazard, Coastal Hazard and Overland Flow

Adoption
Moreton Bay Regional Council adopted this planning scheme policy on 24 November 2015.

Commencement
This planning scheme policy will take effect from 1 February 2016. Amendments to this planning scheme are included at Table of Amendments (inside front cover).

1. Introduction

1.1 Preliminary
This planning scheme policy supports the Moreton Bay Regional Council planning scheme and has been made by Council in accordance with Chapter 3, Part 4, Division 2 and Part 5, Division 1 of the Sustainable Planning Act 2009.

1.2 Purpose
The purpose of this planning scheme policy is to provide for the following:

a) guidance for the preparation of technical reports required to assist in the assessment of proposed development on land in the Flood hazard overlay, Coastal hazard overlay and Overland flow path overlay for natural hazards which include the following:
 i) Structural Engineering Design Report;
 ii) Site Based (Localised) Coastal Engineering Report;
 iii) Site Based (Localised) Flood Report;
 iv) Site Based (Localised) Overland Flow Report;
 v) Drainage Master Plan; and

b) advice on filling requirements when the premises is in both the Flood hazard overlay and the Coastal hazard overlay;

c) the Drainage Master Plan adopted by the Council for a Drainage investigation area identified on Figure 8.2.2.1 – 8.2.2.10 of the Flood hazard overlay code which state design standards for the development of premises included in the General residential zone – Next generation neighbourhood precinct, General residential zone – Urban neighbourhood or Emerging community zone provided in the Drainage investigation area.

1.3 Application
This planning scheme policy applies to assessable development where subject to the Flood hazard overlay code, Coastal hazard overlay code and Overland flow path overlay code assessment criteria.

1.4 Interpretation
Terms used in this planning scheme policy are defined in Schedule 1 – Definitions of the planning scheme. Where a term is not defined in Schedule 1, section 1.3 Interpretation of the planning scheme applies.

2. Risk Management Approach
Council has adopted a risk-based approach to managing flooding and coastal related risks that accords with the international standard AS/NZS ISO 31000:2009. This approach establishes a four (4) step process to risk assessment, as follows:

1. Risk identification;
2. Risk analysis;
3. Risk evaluation; and

Stage 1 involved the identification of the nature and extent of flood and coastal hazards by undertaking an extensive suite of technical investigations, covering both catchment flooding and storm tide inundation. The entire local government area is captured by these investigations.
Stage 2 involved the preparation of Risk Management Studies for both riverine/creek flooding and storm tide inundation which have analysed the risk associated with a range of events. In accordance with AS/NZS ISO 31000:2009, risk is defined as the combination of likelihood of occurrence of an event and the consequence if the event occurs. For these studies, likelihood is interpreted as the frequency of the flood or storm tide event, while hydraulic hazard categories were used to define the flood behaviour characteristics, which provide an indicative measure of the consequences of flooding and inundation.

Stage 3 involved the determination of acceptable, tolerable and intolerable risks, while Stage 4 involved the implementation of risk treatment measures that will reduce risks from a tolerable or intolerable level down to a level considered acceptable to Council and the community.

Council has adopted the following risk categorisation consistent with the State Planning Policy – State Interest Guideline: Natural Hazards Risk and Resilience (August 2014) –

a) **Acceptable risk** – A risk that, following an understanding of the likelihood and consequences, is sufficiently low to require no new treatments or actions to reduce risk further. Individuals and society can live with this risk without feeling the necessity to reduce the risks any further.

b) **Tolerable risk** – A risk that, following an understanding of the likelihood and consequences, is low enough to allow the exposure to continue, and at the same time high enough to require new treatments or actions to reduce risk. Society can live with this risk but believe that as much as is reasonably practical should be done to reduce the risks further.

c) **Intolerable risk** – A risk that, following an understanding of the likelihood and consequences, is so high that it requires actions to avoid or reduce the risk. Individuals and society will not accept this risk and measures must be put in place to reduce risks to at least a tolerable level.

For the purpose of this document and alignment with State Government terminology, unacceptable risk is considered to also be intolerable risk.

Figures 1 and 2 demonstrate the derivation of hydraulic hazard categories, which relate to the depth and velocity of flood waters for flood (river and creek) and storm tide events, respectively. The river and creek hydraulic hazard categories H1-H5 were derived from the Newcastle Concept Flood Planning Report (BMT WBM, 2009), which is modified from Floodplain Management in Australia (CSIRO, 2000) and the NSW Floodplain Development Manual (NSW Government, 2005). The storm tide hydraulic categories H1-H5 were derived by GHD (2012) based on the potential impacts of combined wave action and storm surge.
The storm tide hazard approach presented in Figure 2 is considered by Council to be more detailed and locally focused than the standard State Government method for determining high and medium hazard zones for storm tide inundation.

The general consequences associated with each of these hydraulic behaviour categories are described in Table 1.
Table 1 Hydraulic behaviour categories and their respective consequences

<table>
<thead>
<tr>
<th>Low Risk to life and property</th>
<th>High Risk to life and property</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>H2</td>
</tr>
</tbody>
</table>
| **Insignificant
No significant life risk** | **Minor** | **Moderate** | **Major** | **Catastrophic** |
| Property risk only to items which come in direct contact with floodwaters such as building contents | | | | |
| Low life risk. Able bodied adults can walk safely. Cars can float and precautions must be followed to keep them out of floodwaters | Moderate life risk. Able bodied adults cannot safely walk. Only large vehicles (trucks) can safely travel. | Major life risk. Light frame buildings (e.g. houses) can fail structurally | Extreme life risk. Majority of buildings could fail |

1. Equivalent from National Emergency Risk Assessment Guidelines October 2010 (NERAG 2010)

Using the data derived from the Stage 1 investigations, the flood frequencies were combined with the hydraulic hazard categorisation (H1-H5) in accordance with a risk matrix for river and creek flooding as well as storm tide inundation, as discussed further below.

The risk was defined based primarily on the hydraulic hazard category, but also gives some consideration to specific risk elements, such as the risk of isolation and risk to life elements.

A risk matrix (Figure 3) was developed by Council that describes the level of risk based on likelihood (i.e. the frequency of an event occurring) and consequence (i.e. the hydraulic hazard category). Development of the matrix involved specialist engineering and planning input, and has included feedback from community consultation regarding the tolerable and intolerable levels of risk.

Figure 3 Combined flood risk matrix

<table>
<thead>
<tr>
<th>Likelihood level</th>
<th>Consequence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current MBRC flood mapping (Flood Check)</td>
<td>NERAG 2010</td>
</tr>
<tr>
<td>Coastal hazard (storm tide inundation)</td>
<td>Flood hazard</td>
</tr>
<tr>
<td>0.01% AEP 2014 (1:10,000 ARI)</td>
<td>River and Creek Floodplain Extent (PMF)</td>
</tr>
<tr>
<td>0.1% AEP 2014 (1:1,000 ARI)</td>
<td>0.1% AEP 2014 (1:1,000 ARI)</td>
</tr>
<tr>
<td>1% AEP 2014 (1:100 ARI)</td>
<td>1% AEP 2014 (1:100 ARI)</td>
</tr>
<tr>
<td>5% AEP 2014 (1:20 ARI)</td>
<td>5% AEP 2014 (1:20 ARI)</td>
</tr>
<tr>
<td>Hydraulic Hazard category</td>
<td>H1</td>
</tr>
<tr>
<td>Risk to Life and Property</td>
<td>Low</td>
</tr>
<tr>
<td>Approximate floodplain hydraulic category</td>
<td>Flood fringe</td>
</tr>
</tbody>
</table>

EI-H Extremely Intolerable High Risk
I-H Intolerable High Risk
T-M Tolerable Medium Risk
T-L Tolerable Low Risk
T-VL Tolerable Very Low Risk

Consistent with the categorisation of risk in the State Planning Policy – State Interest Guideline: Natural Hazards, Risks and Resilience (August 2014), there are no ‘acceptable’ risk areas within the Flood planning area or Coastal planning area (thus allowing some degree of risk treatment, such as planning controls) within the full extent of the Flood hazard overlay and Coastal hazard overlay. As such, Tolerable and Intolerable categories were sub-divided to provide additional levels of risk for interpretation and management response.

High risk areas defined on the Flood hazard overlay and Coastal hazard overlay approximately accords with areas that are categorised as Intolerable (I-H) risk and Extremely Intolerable (EI-H) risk, while Medium risk areas on the overlays mostly accords with areas of Tolerable-Medium (T-M) risk.

The Flood hazard overlay code and Coastal hazard overlay code outline provisions and development controls that relate to the level of risk for premises.

3. Technical reports

3.1 Summary of requirements
The technical reports which are required to be prepared by the assessment criteria of the Coastal hazard overlay code, Flood hazard overlay code and Overland Flow Path overlay code are summarised in Table 2.

<table>
<thead>
<tr>
<th>Development</th>
<th>Coastal hazard overlay</th>
<th>Flood hazard overlay</th>
<th>Overland flow path overlay</th>
</tr>
</thead>
<tbody>
<tr>
<td>New development (Material Change of Use and Reconfiguring a Lot)</td>
<td>Structural Engineering Design Report:</td>
<td>Structural Engineering Design Report:</td>
<td>Site Based (Localised)</td>
</tr>
<tr>
<td></td>
<td>a) High risk storm tide inundation area</td>
<td>a) High risk area*</td>
<td>Overland Flow Report</td>
</tr>
<tr>
<td></td>
<td>b) Medium risk storm tide inundation area</td>
<td>b) Medium risk area*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) Erosion prone area</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Site Based (Localised) Coastal Engineering Report:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) High risk storm tide inundation area</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Erosion prone area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redevelopment (Erosion Prone Area only)</td>
<td>Structural Engineering Design Report</td>
<td>Not applicable</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td>Site Based (Localised) Coastal Engineering Report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor works (extensions)</td>
<td>Structural Engineering Design Report:</td>
<td>Structural Engineering Design Report:</td>
<td>Site Based (Localised)</td>
</tr>
<tr>
<td></td>
<td>c) High risk storm tide inundation area</td>
<td>a) High risk area</td>
<td>Overland Flow Report</td>
</tr>
<tr>
<td></td>
<td>d) Medium risk storm tide inundation area</td>
<td>b) Medium risk area</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e) Erosion prone area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filling</td>
<td>Site Based (Localised) Flood Report:</td>
<td>Site Based (Localised) Flood Report:</td>
<td>Site Based (Localised)</td>
</tr>
<tr>
<td></td>
<td>Within all parts of the Coastal planning area</td>
<td>Within all parts of the Flood planning area</td>
<td>Overland Flow Report</td>
</tr>
<tr>
<td>Development within a Drainage investigation area</td>
<td>Not applicable</td>
<td>Structural Engineering Design Report where in a High or Medium risk areas Drainage Master Plan</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>
3.2 Structural Engineering Design Report (coastal and flooding hazards)

A Structural Engineering Design Report is a requirement for development which is at a High or Medium risk of impact from flood or coastal hazards. Specifically, a Structural Engineering Design Report is required to accompany a development application for the following activities:

a) development of a new building in a High or Medium risk area, as defined in the Flood hazard overlay or Coastal hazard overlay;
b) redevelopment of a building in the erosion prone area, as defined in the Coastal hazard overlay;
c) minor building works (extensions) in a High or Medium risk area, as defined in the Flood hazard overlay or Coastal hazard overlay.

The structural engineering design of the proposed new building, redevelopment or extension is to ensure the building or structure is capable of withstanding the nature of the hazards to which it will be subject. In this regard, the Structural Engineering Design Report is to identify and document the following:

a) the flood or coastal hazards that can potentially occur at the development site;
b) the structural design approach utilised to accommodate the flood or coastal hazards;
c) how the structural design satisfies the relevant overall outcomes and performance outcomes outlined in the Flood hazard overlay code and in the Coastal hazard overlay code.

The consideration of the impact of the flood or coastal hazards on the development is to include, but not be limited to the following:

a) hydrostatic loading due to water depth;
b) hydrodynamic loading associated with both depth and water velocity;
c) potential debris impact loading;
d) potential wave impact loading (wind waves, storm wave overtopping);
e) erosion and scour around the development;
f) any combination of the above.

The Structural Engineering Design Report is to demonstrate appropriate design of the following:

a) structural members to accommodate building loads;
b) floor levels relative to design flood conditions as specified in the relevant overlay code;
c) footings to maintain foundation requirements including allowance for scour;
d) flood resistant building materials;
e) integration of utilities; and
f) emergency egress from the building.

The design intent is for new development to remain structurally sound for all events up to and including the most extreme events (PMF; 0.01% storm tide). For locations where this is considered not possible, land has been included in the Limited Development (Constrained Land) Zone, and no new development or minor building work is intended to occur.

Reference is made to the following standards and guidelines:

b) Mandatory Part 3.5 of the Queensland Development Code (QDC) Construction of buildings in flood hazard areas (see http://www.hpw.qld.gov.au/SiteCollectionDocuments/Mandatory3.5ConstructionOfBuildingsInFloodHazardAreas.pdf); and

The Structural Engineering Design Report is to be prepared by a Registered Professional Engineer of Queensland (RPEQ) with appropriate expertise in structural engineering and design.
3.3 Site Based (Localised) Coastal Engineering Report

A Site Based (Localised) Coastal Engineering Report is a requirement for development which is at a High risk of impact from coastal hazards. Specifically, a Site Based (Localised) Coastal Engineering Report is required to accompany a development application for the following activities:

a) development of a new building in a High risk area, as defined in the Coastal hazard overlay;
b) redevelopment of a building in the Erosion Prone Area, as defined in the Coastal hazard overlay.

The Site Based (Localised) Coastal Engineering Report is to demonstrate that the proposed development:

a) is risk-appropriate for the full design life of the development, taking into consideration the expected future increase in coastal hazards due to sea level rise and changed storm conditions;
b) will not increase risk to life;
c) is supported by an effective evacuation plan;
d) will not significantly increase potential for damage to buildings or infrastructure;
e) will not lead to community hardship or loss of essential amenity, including after significant coastal storms and storm tide events;
f) will not cause detrimental impacts on adjacent properties or other areas within the coastal zone;
g) will protect biodiversity, environmental values, coastal resources and public amenity; and
h) satisfies the relevant overall outcomes and performance outcomes outlined in the Coastal hazard overlay code.

The Site Based (Localised) Coastal Engineering Report is to be prepared following a risk-based framework, as outlined in AS/NZS ISO 31000:2009. The Site Based (Localised) Coastal Engineering Report is also to be prepared giving consideration to the following:

a) State Planning Policy – State Interest Guideline: Coastal Environment (July 2014);
b) State Planning Policy – State Interest Guideline: Natural Hazards, Risk and Resilience (August 2014);

The Site Based (Localised) Coastal Engineering Report is to consider all relevant coastal hazards, including the following:

a) Storm tide inundation (including depth and velocities on inundation);
b) storm wave overtopping of coastal foreshores (for areas potentially affected);
c) sustained storm erosion of soft sediment foreshores (for areas potentially affected);
d) long-term recession of foreshores due to longshore sediment transport differentials, migration and geomorphologic changes to estuaries and tidal inlets, and impacts of other works and structures along the shoreline (for areas potentially affected);
e) gradual increase of area affected by permanent tidal inundation due to future climate change (for areas potentially affected).

As well as present day coastal hazards, the Site Based (Localised) Coastal Engineering Report is to establish and consider future coastal hazards. This will require the assessment of the expected response of the coastline and low-lying coastal floodplains to future climate change conditions, including sea level rise.

If necessary, the Site Based (Localised) Coastal Engineering Report is to detail mitigation measures required to manage coastal hazards in order to achieve the development outcomes listed above. The mitigation measures are to:

a) consider the full range (5%, 1%, 0.1% and 0.01% AEP) of potential coastal storm events and storm tide events;
b) ensure that the structural integrity of the development is maintained, in accordance with the requirements of the Structural Engineering Design Report;
c) be wholly located on the site;
d) not cause any off-site impacts including exacerbating coastal risks on adjacent properties or elsewhere in the coastal zone;
e) ensure the relevant overall outcomes and performance outcomes of the Coastal hazard overlay code are achieved.
The Site Based (Localised) Coastal Engineering Report is to be prepared and certified by a Registered Professional Engineer of Queensland (RPEQ) with appropriate expertise in coastal engineering and management.

3.4 Site Based (Localised) Flood Report

A Site Based (Localised) Flood Report is a requirement for development involving filling and excavation on land affected by the Flood hazard overlay or Coastal hazard overlay. Specifically, a Site Based (Localised) Flood Report is required to accompany a development application for the following activities:

a) development involving filling in any part of the Coastal planning area, as defined in the Coastal hazard overlay;
b) development involving filling in the Medium or Balance flood planning area, as defined in the Flood hazard overlay.

Note that filling in a High risk area defined in the Flood hazard overlay is not intended, while filling in a Medium risk area in the Flood hazard overlay is only intended where the site is also located in the Coastal hazard overlay and the filling of the site is permissible under the Coastal hazard overlay code.

The level of filling is defined in the Flood hazard overlay code and in the Coastal hazard overlay code and depends on the location of the site within the hazard subcategories within the overlay.

Where a Site Based (Localised) Flood Report is required, it is to be included as part of an application for a development permit under the Planning scheme. The report may be a standalone document or incorporated into a broader flood planning study conducted for the development.

The Site Based (Localised) Flood Report is to be prepared in accordance with the current industry practice for flood impact assessments, as outlined in the following:

a) Australian Rainfall and Runoff – updates and revisions being released periodically;
b) Moreton Bay Regional Council Floodplain Risk Management Framework (2015) including Practice Notes (where available);
c) State Planning Policy – state interest guideline: Natural hazards, risk and resilience;
f) Queensland Urban Drainage Manual.

The Site Based (Localised) Flood Report is to be prepared and certified by a Registered Professional Engineer of Queensland (RPEQ) with appropriate expertise in flood impact assessments.

The Site Based (Localised) Flood Report is to document the outcomes of a localised flood investigation, which has been carried out in support of the development. For consideration by the Council, the Site Based (Localised) Flood Report is to demonstrate that the proposed development, including filling (and excavation if included) of the site does not:

a) cause an increase in flooding or drainage risks to surrounding properties or elsewhere on the floodplain;
b) does not impede the flow of floodwaters across the site and/or cause any worsening of flood or coastal hazards (levels, velocities, hazard categories) on neighbouring properties; and
c) does not change the timing of the flood wave or impact on flood warning times.

The scope of the localised flood investigation is to generally accord with the following:

a) investigate the hydraulic characteristics of the waterway for the pre- and post-development scenarios;
b) determine whether the development is likely to cause any adverse impacts to upstream or downstream properties;
c) determine whether the cumulative impact of development is likely to cause an adverse impact on other properties elsewhere in the floodplain;
d) Determine the flood mitigation requirements and demonstrate that they can be implemented through on-site works.
An adverse off-site impact is defined by the following conditions:

a) Flood or Storm Tide levels increase on Department of Transport and Main Roads infrastructure; or
b) Flood or Storm Tide levels increase by more than 0.02m; or
c) Flow velocities increase by more than 0.1m/s; or
d) Any increase to the Flood or Coastal Hazard categories.

Flood and storm tide information on a lot-by-lot basis is available from Council’s Flood Check Property and Development Reports. Council has prepared detailed flood models for all fourteen minor basins across the local government area, as well as a storm tide study, which have been integrated into a consolidated Regional Floodplain Database. The localised flood investigation is to utilise appropriate information from Council’s Regional Floodplain Database as relevant inputs into this assessment. For larger developments the use of Council’s flood models for assessment purposes is recommended (refer Section 3.7.3 for further details regarding Council’s model packages).

The Site Based (Localised) Flood Report is to contain, as a minimum, the following:

a) a site survey plan showing drainage easements, waterway corridors, cadastral boundaries, ground levels, structures, trees, fences, kerb and road levels, pipe invert levels and pit surface levels for the existing and proposed conditions;
b) the modelling information detailed in Section 3.7 below;
c) a flood model layout, including ground elevations, adopted surface roughness and structures;
d) a catchment plan showing sub-catchments, flowpaths and inundation extents and levels for the existing and proposed conditions;
e) the proposed site layout, including an earthworks plan, the proposed development levels and mitigation measures etc;
f) the model results for flood behaviour (levels, velocities, hazards) including difference plots between existing and proposed conditions across the site and in surrounding properties, for the 5%, 1% and 0.1% Annual Exceedance Probability (AEP) events and the DFE for Flood and Storm Tide, where applicable;
g) discussion and assessment of impacts of flooding on the proposed development;
h) discussion and assessment of the impacts of the proposed development on flooding elsewhere, including confirmation that there are no adverse off-site impacts as a result of the proposed development;
i) a statement of compliance with relevant requirements in the overall outcomes and performance outcomes outlined in the Flood hazard overlay code and in the Coastal hazard overlay code.

Where compensatory earthworks are required as part of the solution identified in the Site Based (Localised) Flood Report, these are to be undertaken in accordance with Section 4.2 of this policy.

Where the proponent chooses to make use of Council’s Regional Flood Database (RFD) model, additional requirements and guidance may be provided as part of the licence arrangements.

3.5 Site Based (Localised) Overland Flow Report

A Site Based (Localised) Overland Flow Report is a requirement for development that is located in a designated overland flow path as defined by the Overland flow path overlay.

The purpose of the Site Based (Localised) Overland Flow Report is to demonstrate that the development:

a) will not result in a material increase in flood level or flood hazard on upstream, downstream or surrounding properties; and
b) will provide acceptable management of flood risk with appropriate development levels to ensure the safety of people.

The Site Based (Localised) Overland Flow Report differs from a flood report in that overland flows are essentially shallow surface flows that discharge to the piped drainage system or a natural waterway. Overland flows are difficult to establish through computer models, given the fine resolution of the flow paths and controlling structures and topographic features. Rather, flowpaths are defined based on general landform characteristics, built structures (including fences, retaining walls and landscaping) and the existing stormwater network. In contrast, the site based flood report (Site Based (Localised) Flood Report) is more targeted at defined watercourses that can have significant increase in water levels in response to catchment rainfall and runoff.
In preparing the Site Based (Localised) Overland Flow Report, the following considerations are required:

a) proposed development is to take account of existing or created overland flow paths and make due provision in the design of the site stormwater system;
b) maximum overland flow velocity should not exceed 2m/s with a depth not exceeding 300mm;
c) overland flow paths should be located along roads and reserves rather than across private property;
d) development of the site should preserve existing overland flow paths as far as practical;
e) design is to be in accordance with QUDM.

The Site Based (Localised) Overland Flow Report is to provide calculations and other necessary evidence to demonstrate the following:

a) impacts of the proposed development on localised flooding are mitigated and surrounding properties (upstream and downstream) are not adversely affected;
b) relevant overall outcomes and performance outcomes of the Values and Constraints - Overland flow path of the applicable code have been achieved.

The Site Based (Localised) Overland Flow Report is to be included as part of an application for a development permit under the Planning scheme and may be a standalone document or incorporated into a broader flood planning study conducted for the development.

The Site Based (Localised) Overland Flow Report is to be prepared in accordance with the current industry practice for overland flow impact assessments.

The Site Based (Localised) Overland Flow Report is to be prepared and certified by a Registered Professional Engineer of Queensland (RPEQ) with appropriate expertise such as hydrology, hydraulic modelling and stormwater engineering.

3.6 Drainage Master Plan

Development within a Drainage investigation area is to be in accordance with a Council approved Drainage Master Plan.

The Drainage Master Plan will be prepared by the following:

a) the Council in which case it will be adopted by the Council and included in Appendix 1 of the planning scheme policy; or
b) the applicant for a development approval and approved by the Council as part of the development approval for the development.

The Drainage Master Plan prepared by the applicant is to identify all planning and design standards and outcomes, regulatory provisions, works and land transfers necessary to implement a stormwater management solution which will mitigate flood hazard on the site and within the Drainage investigation area sufficient to support the proposed development and meet the relevant provisions and outcomes of the Flood hazard overlay code.

The intent of the Drainage Master Plan is to provide an overarching plan which coordinates land use, built form and infrastructure in a manner that provides clear direction on the development capability of the Drainage investigation area, sets out infrastructure (including mitigation infrastructure) requirements and responsibilities, and addresses the risk to which the area is subject.

The Drainage Master Plan is to be prepared for the whole Drainage investigation area within which the development site is located, unless otherwise agreed with the Council.

The Drainage Master Plan is to be prepared in accordance with the requirements for a Master Drainage Plan, as outlined in Section 2.5 of QUDM, as well as the following additional criteria:

a) completion of detailed master planning, preparation of appropriate development controls and identification of suitable works which:
 i) identify opportunities to support development of the area consistent with the underlying zone or local plan, including preparation of any area-specific development standards necessary to bring effect to any works or make further improvements to flood risk reduction;
ii) provide for dedication of land or acquisition of strategically selected properties to provide surface flow paths; and

iii) address the purpose and relevant provisions of the Flood hazard overlay code;

b) an assessment of possible interim impacts of the Drainage Master Plan where delivery is likely to span long term periods;

c) an assessment of the effectiveness of the overall scheme in reducing flood risk.

Where the area subject to a Drainage Master Plan is also located within the Coastal planning area, consideration is also to be given to:

a) storm tide inundation including depth and velocities on inundation;

b) storm wave overtopping of coastal foreshores;

c) sustained storm erosion of soft sediment foreshores;

d) long-term recession of foreshores due to longshore sediment transport differentials, migration and geomorphologic changes to estuaries and tidal inlets, and impacts of other works and structures along the shoreline (where appropriate); and

e) gradual increase of area affected by permanent tidal inundation due to future climate change (where appropriate).

A timeframe of 2100 is considered appropriate for identifying and managing future coastal hazards affecting the Drainage Investigation Area. Changes to sea level rise, storm frequency and wave climate will need to be considered and accommodated.

The Drainage Master Plan is to document a detailed hydraulic analysis of the proposed stormwater drainage system which is required to support the development and is to be prepared in conjunction with the requirements of PSP - Stormwater Management and PSP - Integrated Design.

The Drainage Master Plan is to be provided as part of a development application for development which is subject to a Drainage Master Plan. Where a Drainage Master Plan has not been adopted by the Council, the applicant for the development approval is to submit a Drainage Master Plan for approval by the Council as part of the development application.

The Drainage Master Plan is to be prepared and certified by a Registered Professional Engineer of Queensland (RPEQ) with appropriate expertise such as civil or stormwater engineering.

Where the Drainage Master Plan includes coastal hazard considerations, the Drainage Master Plan is to be prepared and certified by a Registered Professional Engineer of Queensland (RPEQ) with appropriate expertise such as coastal engineering.

3.6.1 Future Drainage Investigation Area - Male Road

Further investigations will occur to determine if there is potential for infrastructure solutions to help reduce the extent and degree of flood risk currently present in the Rural residential zoned area adjoining Male Road, Caboolture (see Appendix 2).

3.7 Computer Modelling

Good modelling practice is required to ensure accurate and reliable outcomes. Modellers must understand the limits and sensitivities of their models and the accuracy of the predicted outcomes. Models must be acknowledged as a coarse simplification of complex processes with their accuracy limited by terrain data and uncertainty in key parameters that can vary such as rainfall, roughness and blockage. Models must be calibrated or validated against a number of varying storms where data is available to provide confidence in the results. Although absolute flows and water levels can be subject to varying degrees of uncertainty, the difference or afflux between the model outputs for the before and after scenarios is expected to be reasonably accurate as any assumptions or inaccuracies will be present in both scenarios.

Each technical report will also need to include the following details with regards to the computer modelling undertaken:

a) modelling software utilised, including the version/revision number;

b) design/data inputs, including their source;

c) modelling methodology;
d) modelling parameters, assumptions and limitations;

e) results of any sensitivity testing of key parameters;

f) calibration/verification results;

g) model modifications undertaken if using Council’s model packages (refer to Section 1.12.3);

h) quality checks including model log and error reporting (message and check) files,

i) results including relevant mapping

j) interpretation and recommendations

Council is to receive the final models with all associated input data files and results. A model log

describing the relevant model names, scenarios and key differences is to be included with the model.

Additional guidance on best practice computer modelling can be referenced in Australian Rainfall and

Runoff (AR&R) and Australian Runoff Quality (ARQ).

Council has internal modelling expertise and prefers the use of runoff routing and hydraulic models as

described below. Alternative models will be considered but it is recommended to receive Council’s

acceptance of the use of these alternative models prior to their adoption.

3.7.1 Hydrological modelling

Hydrological modelling is used to predict peak flow rates, flow volumes and hydrograph shapes for
varying storm events and durations. Models can be based on individual rainfall events or continuous,
long term simulations. Continuous models are usually used for assessing the impact to the hydrological
cycle. Individual rainfall event simulations are typically used for the design of major stormwater
systems. Dynamic or unsteady modelling is required to assess peak flow and storm volumes to
understand the impact of changing floodplain storage and the time for flows to peak.

Hydrological modelling is to be completed based on the recommendations provided in AR&R.

Council’s preferred hydrologic model is the Watershed Bounded Network Model (WBNM) developed by
Michael Boyd, Ted Rigby & Rudi van Drie.

3.7.2 Hydraulic modelling

Hydraulic models are used to determine the area of inundation, flood level and flow velocity to assist
with identifying flood hazards. Models can be either one dimensional with a defined flow path (either a
pipe or surface/overland flow), two dimensional with an undefined flow path, or a combined one/two
dimensional model. Specialist three dimensional models may be applicable for complex hydraulic
structures or water quality modelling.

It is recommended that all hydraulic modelling should be undertaken in accordance with the Regional
Floodplain Database methodology. Relevant reports describing this methodology are downloadable
from Council’s website.

The DFE for Flood comprises the upper envelope of a number of storm/catchment scenarios as
follows:

a) 1% AEP flood event using ARR design rainfalls

b) 1% Moreton Bay Design Storm (MDS) event which is a 15 minute in 270 minute embedded
design storm (15min burst inside a 270 minute burst with storm ‘wings’ scaled down to preserve
overall volume of an ARR design burst)

c) 1% MDS event with Moderate structure blockage – refer to report *Regional Floodplain
Database - Floodplain Parameterisation* (SKM, 2012) report downloadable from the Council
website.

d) 1% MDS event with 20% Increase in rainfall

e) 1% MDS event with 20% Increase in rainfall and increased downstream boundary (0.8m sea
level rise for coastal models and 0.02% AEP event for inland models)
f) 1% MDS event with Medium Dense Vegetation changed to High Dense Vegetation and Low grass/grazing changed to Medium Dense Vegetation within the 1% AEP floodplain to reflect future revegetation.

g) 1% MDS event with Medium Dense Vegetation changed to High Dense Vegetation and Low grass/grazing changed to Medium Dense Vegetation within the 1% AEP floodplain and impact of increased residential development (Change in minor catchment fraction impervious) (this applies only to selected minor basins where urban development is a feature).

Council's preferred hydraulic model is TUFLOW developed by Bill Syme. However in some cases alternate software may be justified depending on the nature of the hydraulic behaviour being assessed. The model complexity must match the complexity of the floodplain and catchment.

3.7.3 Regional Floodplain Database Model Packages
The Regional Floodplain Database model library includes fourteen coupled hydrologic and hydraulic models, one for each of the fourteen ‘minor basins’ within the Moreton Bay Regional Council area. These model packages are available for purchase and can be requested online via Council’s Flood Check website https://www.moretonbay.qld.gov.au/floodcheck/

The following is provided when purchasing a model package for a chosen minor basin:

- **Hydrologic model - WBNM.**
 - a) GIS files - Minor Catchments, Stream Reaches and Stream Junctions
 - b) Model run files
 - c) Model result files
 - i) 14 ARI’s for 10 storm durations;
 - ii) 3 Moreton Bay Design Storm (MDS) simulations.

- **Hydraulic model - TUFLOW.**
 - a) GIS Files - MapInfo MID/MIF input files
 - b) Model input files, run files
 - c) Model results files
 - i) 14 ARI’s for 3-4 durations (varies depending on the minor basin)
 - ii) 10 scenarios using the MDS (including DFE scenarios)
 - d) Result file formats
 - i) flt max grids for h, d, V, Z0, ZQRA, ZMBRC (Flood modelling) and Z9 (Storm Tide modelling)
 - ii) xmdf - Time series data for h, d, V, q, SP, Z0, ZQRA, ZMBRC (Flood modelling), Z9 (Storm Tide modelling) and any standard TUFLOW outputs
 - iii) WRB - WaterRIDE file containing information regarding DEM, velocity and water level
 - e) Landuse input files based on 2013 Aerial photography
 - f) Latest LiDAR (2014) (within the model code boundary) as well as modifiers for post LiDAR developments where applicable and available. One or more of the following formats can be used for the modifiers: txt, 12da, asc, MID/MIF, grd and tin.

MBRC does not provide models for the estimation of Overland Flow.

4. Filling requirement

4.1 Concurrent Fill Requirements
Fill requirements for sites located within the Flood planning area or the Coastal planning area are detailed in the Flood hazard overlay code and in the Coastal hazard overlay code respectively. For sites that are within both overlays, the requirements of the higher risk area prevail. Filling requirements for sites within both overlays are summarised in Table 3.
Table 3 Concurrent fill level requirements

<table>
<thead>
<tr>
<th>COASTAL OVERLAY CODE</th>
<th>Flood Overlay Code</th>
<th>Drainage investigation area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High LDZ</td>
<td>High Risk</td>
</tr>
<tr>
<td></td>
<td>High Non LDZ</td>
<td>Med Risk</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>Balance flood planning area</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erosion Prone Area (EPA)</td>
<td>No filling</td>
<td>No filling</td>
</tr>
<tr>
<td>High LDZ</td>
<td>No filling</td>
<td>No filling</td>
</tr>
<tr>
<td>High Non LDZ</td>
<td>No filling</td>
<td>No filling</td>
</tr>
<tr>
<td>Medium</td>
<td>No filling</td>
<td>No filling</td>
</tr>
<tr>
<td>Balance coastal planning area</td>
<td>No filling</td>
<td>No filling</td>
</tr>
</tbody>
</table>

Notes:
DFE Level of the Defined Flood Event relevant for the subject site.
HAT2100 Year 2100 Highest Astronomical Tide level
LDZ Limited Development (Constrained Land) Zone
DMP Drainage Master Plan

4.2 Compensatory Earthworks

4.2.1 Works within a Defined Flood Event area of inundation

Works within the area of inundation for the Defined Flood Event do not involve any of the following:
 a) any physical alteration to a watercourse or floodway affecting its flow capacity;
 b) any native vegetation clearing;
 c) any increase in the rate of release of stormwater runoff from the premises to the area of inundation for the Defined Flood Event;
 d) altering the existing surface levels to adversely impact flood immunity of surrounding properties;
 e) filling or excavation below the Defined Flood Event inundation level inclusive of any previous occurrences of filling or excavation on the site that reduces the flood storage volume or increases flow velocities resulting in erosion, except for compensatory earthworks which are permitted to occur within a Defined Flood Event area of inundation but only under limited circumstances; or
 f) any physical alteration of the watercourse or floodway within 30m landward of its top of bank.

4.2.2 Compensatory earthworks impact within a Defined Flood Event area of inundation

Compensatory earthworks seek to allow for limited cut and fill to occur, at the same incremental level, within the Defined Flood Event and achieving a nil impact on the hydraulic characteristics of the waterway or floodway. The purpose for allowing limited compensatory earthworks is to allow for the regularisation of development parcels subject to a Defined Flood Event constraint.

Where compensatory earthworks occur within the Defined Flood Event, such earthworks are only acceptable where they do not adversely impact upon the hydraulic characteristics of a waterway or floodway. Adverse impacts can be actual, potential or cumulative, and can result in adverse impacts downstream from where the earthworks occur. Earthworks which are not compensatory can result in:
 a) a reduction in the flood-capacity of a waterway or floodway;
 b) a reduction in flood storage;
 c) altering of the hydraulic control (flow, velocity and direction) of a watercourse;
d) an increased or new scouring and sedimentation.

Compensatory earthworks are acceptable if:
 a) the total area of cut or fill does not exceed 20% of the site below the Defined Flood Event;
 b) the total volume of “cut to fill” plus any imported fill (in m³) does not exceed the volume (in m³) calculated by multiplying the site area below the Defined Flood Event (in hectares) by 250;
 c) any physical alteration of the waterway or floodway occurs no closer than 30m from the top of the bank;
 d) the fill area is free draining.

4.2.3 Typical compensatory earthworks

Figure 4 identifies an acceptable layout for compensatory earthworks where cut and fill within the Defined Flood Event are effectively undertaken at the same level and in excess of 30m from the top of the bank of the watercourse. Figures 5 and 6 identify unacceptable layout for compensatory earthworks as cut and fill within the Defined Flood Event are not undertaken at the same level and are within 30m from the top of the bank of the watercourse.

Figure 4 Acceptable compensatory earthworks
Figure 5 Unacceptable compensatory earthworks

Figure 6 Unacceptable compensatory earthworks
Appendix 1

Drainage Investigation Areas having a Council adopted Drainage Master Plans

<table>
<thead>
<tr>
<th>Item</th>
<th>Council Adopted Drainage Master Plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Drainage Investigation Area 4, Woody Point (Figure 8.2.2.3 in the Flood hazard overlay code)</td>
</tr>
<tr>
<td>2</td>
<td>Drainage Investigation Area 6, Margate (Figure 8.2.2.4 in the Flood hazard overlay code)</td>
</tr>
<tr>
<td>3</td>
<td>Drainage Investigation Area 11b, Scarborough (Figure 8.2.2.6 in the Flood hazard overlay code)</td>
</tr>
<tr>
<td>4</td>
<td>Drainage Investigation Area 12, Scarborough (Figure 8.2.2.6 in the Flood hazard overlay code)</td>
</tr>
<tr>
<td>5</td>
<td>Drainage Investigation Area 16, Burpengary (Figure 8.2.2.9 in the Flood hazard overlay code)</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

1.1 Introduction and Purpose of Drainage Master Plan

This Drainage Master Plan (DMP) applies to Drainage Investigation Area (DIA) 4 identified in Figure 8.2.2.3 of the Flood Hazard Overlay Code. This DMP has been prepared by the Moreton Bay Regional Council in accordance with section 3.6 of the Planning Scheme Policy – Flood Hazard, Coastal Hazard and Overland Flow.

The purpose of the DMP is to identify:

(a) the flood and drainage constraints affecting DIA 4;
(b) the flood mitigation strategy for DIA 4 that achieves overall outcome d. of the Flood Hazard Overlay Code in a way intended to facilitate development outcomes in the DIA consistent with the Urban Neighbourhood Precinct of the General Residential Zone;
(c) the particular components of the flood mitigation strategy that will be undertaken by the Council; and
(d) the particular components and applicable standards of the flood mitigation strategy that are required to be undertaken by applicants as part of carrying out assessable development.

The DMP contains the following sections:

- Section 1 (this section) – providing an introduction and confirming when the DMP applies to assessable development;
- Section 2 – Providing an overview and description of the DIA, a summary of the flood issues relevant to the DIA and summary of the planning context/intent;
- Section 3 – Providing a description of the flood risk mitigation strategy and the different components of the strategy;
- Section 4 – Identifying the preferred implementation and sequencing of the flood mitigation strategy; and
- Section 5 – The design standards and requirements for works for all aspects of development (i.e. material change of use, reconfiguring a lot, building work and operational work) in addition to the requirements otherwise required by the MBRC Planning Scheme.

1.2 Application of DMP

This DMP applies to development carried out in DIA 4 where required in accordance with the Flood Hazard Overlay Code.

This DMP identifies standards for carrying out development in addition to the applicable planning scheme codes.

This DMP does not apply to development identified as exempt in Part 5.10.2 Levels of Assessment for the Flood Hazard Overlay.

2 DIA DESCRIPTION

2.1 Overview/Description of DIA

DIA 4 is located in the suburb of Woody Point, located in the southern area of the Redcliffe Peninsula of the Moreton Bay Region. Refer to Figure 1 identifying the location of DIA 4 in Woody Point.
Figure 1: DIA 4 Location Map

Source: MBRC Aerial Photography, 2015

DIA 4 comprises an area of approximately 60,000m² and includes properties located at the western end of Alfred Street, Lilla Street and Woodcliffe Crescent. DIA 4 also includes properties along Oxley Avenue extending towards the southern coastline of the peninsula. Refer to Figure 2 for a map of the DIA 4.
DIA 4 contains a variety of housing types including detached residential housing, low-scale multiple dwellings to high rise residential developments. DIA 4 also includes a number of restaurants, cafes and other small-scale non-residential activities to support the locality. DIA 4 is located a short distance from the Margate district centre and is accessible to a number of open space areas, beaches and local parks, including Crockatt Park and Woody Point Park (South) which is located opposite DIA 4.

The DIA 4 contains areas with sloping terrain with the highest point located in the north-eastern area of DIA 4 and sloping downwards towards the peninsula shoreline to the south. Refer to Figure 3 below for a contour map of the area.
2.2 Summary of Flood Issues affecting the DIA

The flooding issues affecting DIA 4 are characterised by surface flow flooding through a natural gully that runs roughly perpendicular to roads in the area cause by:

- variations in the topography of the land that slope towards the rear of a large number of affected lots;
- private properties that are similar in elevation to the surrounding road network which has created natural gullies along common rear boundaries; and
- the limited capacity of the existing drainage system to cater for minor storm events.

In the 1% AEP flood event it is estimated the majority of properties within the DIA are inundated to some degree (i.e. prior to the implementation of the flood risk mitigation strategy contained in this DMP).

Refer to Figure 4 identifying the 1% AEP flood map for DIA 4.
2.3 Planning Context and Intent

DIA 4 is mostly included in the Urban Neighbourhood Precinct of the General Residential Zone supported by parks around Woodcliffe Street included in the Recreation and Open Space Zone. Accordingly development outcomes expected by the DMP are those identified in the purpose and overall outcomes of the General Residential Zone Code and the Recreation and Open Space Zone. In summary this includes a diverse mix of residential uses at a scale and density that facilitates efficient land use patterns and supports compact, walkable and sustainable communities that are well connected.

Outcomes for other aspects of development not addressed by the zone codes (e.g. reconfiguring a lot, operational work etc) are expressed in the relevant planning scheme codes and continue to apply to development in the DIA.

Development outcomes in DIA 4 prior to the implementation of the flood risk mitigation strategy in this DMP are constrained due to the flood impacts affecting the area. The implementation of the DMP and development standards supports the intended high dwelling density at this location (consistent with the zone outcomes) in conjunction with the implementation of the DMP.

Refer to Figure 5 identifying the planning scheme zone applying to DIA 4.

Source: MBRC Flood Explorer, 2016
3 FLOOD RISK MITIGATION STRATEGY

3.1 Overview/Summary

The general approach to the flood risk mitigation strategy in DIA 4 is to increase the capacity of the drainage system to allow for filling of allotments to achieve appropriate flood immunity levels. Increasing the drainage capacity has the effect of reducing the known flood risk determined at the date of adoption of the planning scheme. In turn this allows the filling of all allotments in the DIA to flood immunity levels over time without exacerbating flood risks (as determined at the date of adoption of the planning scheme).

The flood risk mitigation strategy for DIA 4 therefore comprise:

(a) The flood risk mitigation to be undertaken by Council - Drainage upgrade works to part of the drainage network; and

(b) The flood risk mitigation to be undertaken by applicants - Filling of allotments within the DIA to the required flood immunity level.

Each of these components of the flood risk mitigation strategy are described in sections 3.2 and 3.3.

The flood risk mitigation strategy will reduce flood inundation across private properties within the DIA thereby substantially improving the development potential of the area. The implementation of the flood risk mitigation strategy will ensure that in the post-mitigation case for the 1% AEP flood event no properties are inundated.
3.2 Flood Risk Mitigation to be undertaken by Council

The flood risk mitigation measures to be undertaken by the Moreton Bay Regional Council are summarised below:

- Increase the drainage capacity of the stormwater network along Oxley Avenue between Alfred Street and Annie Street;
- Extend the drainage network further along Oxley Avenue from Alfred Street to Woody Point Park and a new outfall to Bramble Bay;
- Decommission the following existing drainage lines:
 - from the Alfred Street/Oxley Avenue intersection to Woody Point Memorial School of Arts;
 - from Oxley Avenue to Crockatt Park and the existing outfall to Bramble Bay;
- Retain existing parks in the southern area around Woodcliffe Street for their overland flow carrying function.

Details of the proposed work are included in Appendix A - Flood Risk Mitigation to be undertaken by Council - Detailed Design DIA 4.

The Council can be contacted to confirm the expected timing for commencement/completion of the drainage works to be undertaken by Council.

3.3 Flood Risk Mitigation to be undertaken by Applicants

The flood risk mitigation to be undertaken by applicants is to fill all allotments in the DIA to the Flood Planning Level (Defined Flood Event + required freeboard for the flood planning area).

Filling required in accordance with the standards identified in Section 5 is required not only to achieve flood immunity for individual properties but to specifically direct flood waters to the street and drainage network away from surrounding properties. Filling is a fundamental part of the flood mitigation strategy for the DIA as a whole and accordingly will be a mandatory condition of development across the entire development site.

The general approach to allotment filling is to provide a uniform grade with a minimum 1:100 crossfall to the street for the whole allotment/development site. Section 5 and Table 1 of the DMP identifies the detailed standards and circumstances where filling is required for all aspects of development (i.e. material change of use, reconfiguring a lot etc). Filling is required where carrying out a material change of use and/or reconfiguring a lot (other than a boundary realignment). Filling is permitted but not mandatory in other circumstances.

4 FLOOD RISK MITIGATION IMPLEMENTATION AND SEQUENCING

The drainage upgrade works to be carried out by Council as detailed in Section 3.2 must be completed before filling of allotments in accordance with the standards in Section 5 is permitted.

Filling proposed prior to the implementation of the drainage works to be carried out by Council is not in accordance with this DMP and subject to the respective performance outcomes of the Flood hazard overlay code.
5 REQUIREMENTS FOR WORKS AND DESIGN STANDARDS

The flood risk mitigation to be undertaken by applicants includes filling where required in accordance with Table 1.

Alternative approaches to the standards in this section are subject to assessment against the applicable performance outcomes of the Flood hazard overlay code.

Table 1 - Fill Requirements

<table>
<thead>
<tr>
<th>Aspect of Development</th>
<th>Filling Requirements</th>
<th>Minimum Fill Level</th>
<th>Minimum Extent of Filling</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material change of use</td>
<td>Filling is mandatory</td>
<td>Flood Planning Level</td>
<td>The entire allotment/development site area and meeting the following:</td>
<td>The filling requirements outlined in this DMP must be considered in conjunction with the other applicable code requirements identified in the MBRC Planning Scheme. This may include consideration of, but not limited to:</td>
</tr>
<tr>
<td>And/or</td>
<td></td>
<td></td>
<td>(a) provide a minimum 1:100 uniform cross fall shaped to contains flood waters to the street and drainage network with the exception of meeting (b) and (c);</td>
<td>earthworks, drainage, filling and associated retaining walls to avoid adverse impacts on adjacent properties; and</td>
</tr>
<tr>
<td>Reconfiguring a lot (other than a boundary realignment)</td>
<td></td>
<td></td>
<td>(b) provide an accessible grade for vehicle access by the applicable design vehicle for the development from the street to the minimum fill level; and</td>
<td>flood immunity requirements for building work and other components of development where not achieved by filling alone.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(c) ensure no worsening of flood impacts to other properties beyond known flood impacts at the date of adoption of the planning scheme.</td>
<td></td>
</tr>
<tr>
<td>Aspect of Development</td>
<td>Filling Requirements</td>
<td>Minimum Fill Level</td>
<td>Minimum Extent of Filling</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------</td>
<td>--------------------</td>
<td>---------------------------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| Reconfiguring a lot where for a boundary realignment | Filling is permitted but not mandatory | N/A | N/A | Filling is permitted and minimum fill levels are not regulated by the DMP for this aspect of development. Note: Maximum fill to DMP levels is encouraged. Where filling occurs, other applicable code requirements apply in the MBRC Planning Scheme. This may include consideration of, but not limited to:
- earthworks, drainage, filling and associated retaining walls to avoid adverse impacts on adjacent properties; and
- flood immunity requirements for building work and other components of development where not achieved by filling alone. |

<table>
<thead>
<tr>
<th>Aspect of Development</th>
<th>Filling Requirements</th>
<th>Minimum Fill Level</th>
<th>Minimum Extent of Filling</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Operational work (filling or excavation only) | Filling is mandatory | Flood Planning Level | The entire allotment/development site area and meeting the following:
(a) provide a minimum 1:100 uniform cross fall shaped to contains flood waters to the street and drainage network with the exception of meeting (b) and (c);
(b) provide an accessible grade for vehicle access by the applicable design vehicle for the development from the street to the minimum fill level; and
(c) ensure no worsening of flood impacts to other properties beyond known flood impacts at the date of adoption of the planning scheme. | The filling requirements outlined in this DMP must be considered in conjunction with the other applicable code requirements identified in the MBRC Planning Scheme. This may include consideration of, but not limited to:
- earthworks, drainage, filling and associated retaining walls to avoid adverse impacts on adjacent properties; and
- flood immunity requirements for building work and other components of development where not achieved by filling alone. |
<table>
<thead>
<tr>
<th>Aspect of Development</th>
<th>Filling Requirements</th>
<th>Minimum Fill Level</th>
<th>Minimum Extent of Filling</th>
<th>Notes</th>
</tr>
</thead>
</table>
| All other operational work where not associated with a material change of use or reconfiguring a lot | Filling is permitted but not mandatory | N/A | N/A | Filling is permitted and minimum fill levels are not regulated by the DMP for this aspect of development. The filling requirements outlined in this DMP must be considered in conjunction with the other applicable code requirements identified in the MBRC Planning Scheme. This may include consideration of, but not limited to:
- earthworks, drainage filling and associated retaining walls to avoid adverse impacts on adjacent properties; and
- flood immunity requirements for building work and other components of development where not achieved by filling alone. |
| Building work where not associated with a material change of use | Filling is permitted but not mandatory | N/A | N/A | Filling is permitted and minimum fill levels are not regulated by the DMP for this aspect of development. The filling requirements outlined in this DMP must be considered in conjunction with the other applicable code requirements identified in the MBRC Planning Scheme. This may include consideration of, but not limited to:
- earthworks, filling and associated retaining walls to avoid adverse impacts on adjacent properties; and
- flood immunity requirements for building work and other components of development where not achieved by filling alone. |
Appendix A - Flood Risk Mitigation to be undertaken by Council

Detailed Design DIA4
DRAINAGE MASTER PLAN
DRAINAGE INVESTIGATION AREA 6
MARGATE
1 INTRODUCTION

1.2 Introduction and Purpose of Drainage Master Plan

This Drainage Master Plan (DMP) applies to Drainage Investigation Area (DIA) 6 identified in Figure 8.2.2.4 – Margate of the Flood Hazard Overlay Code. This DMP has been prepared by the Moreton Bay Regional Council in accordance with section 3.6 of the Planning Scheme Policy – Flood Hazard, Coastal Hazard and Overland Flow.

The purpose of the DMP is to identify:

(a) the flood and drainage constraints affecting DIA 6;
(b) the flood mitigation strategy for DIA 6 that achieves overall outcome d. of the Flood Hazard Overlay Code in a way intended to facilitate development in the DIA consistent with the Next Generation Neighbourhood Precinct of the General Residential Zone and the District Centre Precinct of the Centre Zone (overall outcomes of the zones for both reconfiguring a lot and material change of use);
(c) the particular components of the flood mitigation strategy that will be undertaken by the Council; and
(d) the particular components and applicable standards of the flood mitigation strategy that are required to be undertaken by applicants as part of carrying out assessable development.

The DMP contains the following sections:

- Section 1 (this section) – providing an introduction and confirming when the DMP applies to assessable development;
- Section 2 – Providing an overview and description of the DIA, a summary of the flood issues relevant to the DIA and summary of the planning context/intent;
- Section 3 – Providing a description of the flood risk mitigation strategy and the different components of the strategy;
- Section 4 – Identifying the preferred implementation and sequencing of the flood mitigation strategy; and
- Section 5 – The design standards and requirements for works for all aspects of development (i.e. material change of use, reconfiguring a lot, building work and operational work) in addition to the requirements otherwise required by the MBRC Planning Scheme.

1.2 Application of DMP

This DMP applies to development carried out in DIA 6 where required in accordance with the Flood Hazard Overlay Code.

This DMP identifies standards for carrying out development in addition to the applicable planning scheme codes.

This DMP does not apply to development identified as exempt in Part 5.10.2 Levels of Assessment for the Flood Hazard Overlay.

2 DIA DESCRIPTION

2.1 Overview/Description of DIA

DIA 6 is located in the suburb of Margate, located in the southern area of the Redcliffe Peninsula of the Moreton Bay Region. Refer to Figure 1 identifying the location of DIA 6 in Margate.
DIA 6 comprises an area of approximately 78,500m² and follows the natural gully from the Duffield Road / Dover Road intersection in the west of the catchment to the Margate Parade / Mabel Street intersection on the Moreton Bay shoreline. Refer to Figure 2 for a map of the DIA 6.

DIA 6 contains residential housing in the form of single detached dwellings to multiple dwelling units. A large portion of the DIA 6 includes an Educational Establishment and ancillary sporting fields that service the local community. A number of small-scale non-residential activities are also found in DIA 6.

DIA 6 is located in proximity to a District Centre, including the Margate Shopping Centre in addition to a wide range of services and facilities that service the catchment and surrounds. The area is accessible to a number of open space areas, beaches and local parks, including the Sutton’s Beach Leisure Area which is located a short distance from DIA 6.
The area including DIA 6 and surrounds slopes downwards towards the east, ranging from approximately 13mAHD at Cox Street to 2mAHD at Margate Parade. Refer to Figure 3 below for a contour map of the area.

![Figure 5 - Contour Map](source: MBRC Contours (2016))

2.2 Summary of Flood Issues affecting the DIA

The flooding issues affecting DIA 6 are characterised by flooding impacts on properties caused by:

- the limited capacity of the existing drainage system to cater for minor storm events; and
- the high crown of Oxley Avenue which causes flooding of properties upstream (west of Oxley Avenue); and
- existing land development and construction within the natural gully/watercourse.

In the 1% AEP flood event it is estimated the majority of properties within the DIA are inundated to some degree (i.e. prior to the implementation of the flood risk mitigation strategy contained in this DMP).

Refer to Figure 4 identifying the 1% AEP flood map for DIA 6.
2.3 Planning Context and Intent

DIA 6 is mostly included in the Next Generation Neighbourhood Precinct of the General Residential Zone. DIA 6 is supported by the Langdon Park sporting field included in the Recreation and Open Space Zone and a number of non-residential uses included in the District Centre Precinct of the Centre Zone. The Humpybong State School is located in DIA 6 and is designated as a community activity under the Community Activities and Neighbourhood Hubs Overlay, supported by the overall outcomes of the Next Generation Neighbourhood Precinct and General Residential Zone.

Accordingly, development outcomes expected by the DMP are those identified in the purpose and overall outcomes of the General Residential Zone Code, Recreation and Open Space Zone Code and Centre Zone Code.

In summary, this includes a diverse mix of residential and non-residential uses at a scale and density that facilitates efficient land use patterns and supports compact, walkable and sustainable communities that are well connected.

Outcomes for other aspects of development not addressed by the zone codes (e.g. reconfiguring a lot, operational work etc) are expressed in the relevant planning scheme codes and continue to apply to development in the DIA.

Development outcomes in DIA 6 prior to the implementation of the flood risk mitigation strategy in this DMP are constrained due to the flood impacts affecting the area. The DMP supports the intended mix of uses and development density at this location (consistent with the outcomes of the zones) in conjunction with the implementation of the DMP.

Refer to Figure 5 identifying the planning scheme zone applying to DIA 6.
3 FLOOD RISK MITIGATION STRATEGY

3.1 Overview/Summary

The general approach to the flood risk mitigation strategy in DIA 6 is to increase the capacity of the drainage system to allow for filling of allotments to achieve appropriate flood immunity levels. Increasing the drainage capacity has the effect of reducing the known flood risk determined at the date of adoption of the planning scheme. In turn this allows the filling of all allotments in the DIA to flood immunity levels over time without exacerbating flood risks (as determined at the date of adoption of the planning scheme).

The flood risk mitigation strategy for DIA 6 therefore comprises:

- The flood risk mitigation to be undertaken by Council - Drainage upgrade works to parts of the drainage network; and
- The flood risk mitigation to be undertaken by applicants - Filling of all allotments west of Oxley Avenue within the DIA to the required flood immunity level.

Each of these components of the flood risk mitigation strategy are described in sections 3.2 and 3.3.

The flood risk mitigation strategy will significantly reduce the number of private properties within the DIA inundated during the 1% AEP event thereby substantially improving the development potential of the area.
3.2 Flood Risk Mitigation to be undertaken by Council

The drainage upgrade works to be undertaken by the Moreton Bay Regional Council involve an upgrade to the drainage lines down Duffield Road and Cox Street with an upgrade to the cross road drainage on Oxley Avenue. Details of the proposed work are included in Appendix A - Flood Risk Mitigation to be undertaken by Council - Detailed Design DIA 6.

The drainage upgrade works to be undertaken by Council rely on the acquisition of property at 63 Duffield Road, Margate described as Lot 2 on RP84070.

The Council can be contacted to confirm the expected timing for commencement/completion of the drainage works to be undertaken by Council.

3.3 Flood Risk Mitigation to be undertaken by Applicants

3.3.1 Allotment Filling

The flood risk mitigation to be undertaken by applicants is to fill all allotments west of Oxley Avenue in the DIA to the Flood Planning Level (Defined Flood Event + required freeboard for the Flood Planning Area).

Filling required in accordance with the standards identified in Section 5 is required not only to achieve flood immunity for individual properties but to specifically direct flood waters to the street and drainage network away from surrounding properties. Filling is a fundamental part of the flood mitigation strategy for the DIA as a whole and accordingly will be a mandatory condition of development across the entire development site.

The general approach to allotment filling is to provide a uniform grade with a minimum 1:100 crossfall to the street for the whole allotment/development site. Section 5 and Table 1 of the DMP identifies the detailed standards and circumstances where filling is required for all aspects of development (i.e. material change of use, reconfiguring a lot etc). Filling is required where carrying out a material change of use and/or reconfiguring a lot (other than a boundary realignment). Filling is permitted but not mandatory in other circumstances.

3.3.2 Other Non-Trunk Works

Non-trunk drainage works (such as increasing the capacity of drains feeding into the new trunk drainage system) may be required as a condition of development.

Properties outside the DIA may need to consider non-trunk drainage to connect to their ‘legal point of discharge’ as well as filling (where permitted) to ensure flows are directed to the desired trunk drainage point.

These requirements are not addressed by this DMP and are regulated by the normal planning scheme provisions that apply.
4 FLOOD RISK MITIGATION IMPLEMENTATION AND SEQUENCING

The drainage upgrade works to be carried out by Council as detailed in Section 3.2 must be completed before filling of allotments in accordance with the standards in Section 5 is permitted.

Filling proposed prior to the implementation of the drainage works to be carried out by Council is not in accordance with this DMP and subject to the respective performance outcomes of the Flood hazard overlay code.

5 REQUIREMENTS FOR WORKS AND DESIGN STANDARDS

The flood risk mitigation to be undertaken by applicants includes filling where required in accordance with Table 1.

Alternative approaches to the standards in this section are subject to assessment against the applicable performance outcomes of the Flood hazard overlay code.
Table 1 - Fill Requirements

Note: The drainage upgrade works to be carried out by Council as detailed in Section 3.2 must be completed before filling of allotments in accordance with the standards in Section 5 is permitted. Filling proposed prior to the implementation of the drainage works to be carried out by Council is not in accordance with this DMP and subject to the respective performance outcomes of the Flood hazard overlay code.

<table>
<thead>
<tr>
<th>Aspect of Development</th>
<th>Filling Requirements</th>
<th>Minimum Fill Level</th>
<th>Minimum Extent of Filling</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>If located west of Oxley Avenue and involving:</td>
<td>Filling is mandatory</td>
<td>Flood Planning Level</td>
<td>The entire allotment/development site area and meeting the following:</td>
<td>The filling requirements outlined in this DMP must be considered in conjunction with the other applicable code requirements identified in the MBRC Planning Scheme. This may include consideration of, but not limited to:</td>
</tr>
<tr>
<td>Material change of use and/or</td>
<td></td>
<td></td>
<td>(d) provide a minimum 1:100 uniform cross fall shaped to contains flood waters to the street and drainage network with the exception of meeting (b) and (c);</td>
<td>• earthworks, drainage, filling and associated retaining walls to avoid adverse impacts on adjacent properties; and</td>
</tr>
<tr>
<td>Reconfiguring a lot (other than a boundary realignment)</td>
<td></td>
<td></td>
<td>(e) provide an accessible grade for vehicle access by the applicable design vehicle for the development from the street to the minimum fill level; and</td>
<td>• flood immunity requirements for building work and other components of development where not achieved by filling alone.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(f) ensure no worsening of flood impacts to other properties beyond known flood impacts at the date of adoption of the planning scheme.</td>
<td></td>
</tr>
<tr>
<td>Aspect of Development</td>
<td>Filling Requirements</td>
<td>Minimum Fill Level</td>
<td>Minimum Extent of Filling</td>
<td>Notes</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------------</td>
<td>--------------------</td>
<td>--------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| If located west of Oxley Avenue and involving: | Filling is permitted but not mandatory| N/A | N/A | Filling is permitted and minimum fill levels are not regulated by the DMP for this aspect of development. Note: Maximum fill to DMP levels is encouraged. Where filling occurs, other applicable code requirements apply in the MBRC Planning Scheme. This may include consideration of, but not limited to:
 * earthworks, drainage, filling and associated retaining walls to avoid adverse impacts on adjacent properties; and
 * flood immunity requirements for building work and other components of development where not achieved by filling alone. |
| Reconfiguring a lot where for a boundary realignment | | | |---|

<table>
<thead>
<tr>
<th>Aspect of Development</th>
<th>Filling Requirements</th>
<th>Minimum Fill Level</th>
<th>Minimum Extent of Filling</th>
<th>Notes</th>
</tr>
</thead>
</table>
| If located west of Oxley Avenue and involving: Operational work (filling or excavation only) | Filling is mandatory | Flood Planning Level | The entire allotment/development site area and meeting the following: (d) provide a minimum 1:100 uniform cross fall shaped to contains flood waters to the street and drainage network with the exception of meeting (b) and (c); (e) provide an accessible grade for vehicle access by the applicable design vehicle for the development from the street to the minimum fill level; and (f) ensure no worsening of flood impacts to other properties beyond known flood impacts at the date of adoption of the planning scheme. | The filling requirements outlined in this DMP must be considered in conjunction with the other applicable code requirements identified in the MBRC Planning Scheme. This may include consideration of, but not limited to:
- earthworks, drainage, filling and associated retaining walls to avoid adverse impacts on adjacent properties; and
- flood immunity requirements for building work and other components of development where not achieved by filling alone. |

The filling requirements outlined in this DMP must be considered in conjunction with the other applicable code requirements identified in the MBRC Planning Scheme. This may include consideration of, but not limited to:
- earthworks, drainage, filling and associated retaining walls to avoid adverse impacts on adjacent properties; and
- flood immunity requirements for building work and other components of development where not achieved by filling alone.
<table>
<thead>
<tr>
<th>Aspect of Development</th>
<th>Filling Requirements</th>
<th>Minimum Fill Level</th>
<th>Minimum Extent of Filling</th>
<th>Notes</th>
</tr>
</thead>
</table>
| If located west of Oxley Avenue and involving: All other operational work where not associated with a material change of use or reconfiguring a lot | Filling is permitted but not mandatory | N/A | N/A | Filling is permitted and minimum fill levels are not regulated by the DMP for this aspect of development. The filling requirements outlined in this DMP must be considered in conjunction with the other applicable code requirements identified in the MBRC Planning Scheme. This may include consideration of, but not limited to:
- earthworks, drainage filling and associated retaining walls to avoid adverse impacts on adjacent properties; and
- flood immunity requirements for building work and other components of development where not achieved by filling alone. |
| If located west of Oxley Avenue and involving: Building work where not associated with a material change of use | Filling is permitted but not mandatory | N/A | N/A | Filling is permitted and minimum fill levels are not regulated by the DMP for this aspect of development. The filling requirements outlined in this DMP must be considered in conjunction with the other applicable code requirements identified in the MBRC Planning Scheme. This may include consideration of, but not limited to:
- earthworks, drainage filling and associated retaining walls to avoid adverse impacts on adjacent properties; and
- flood immunity requirements for building work and other components of development where not achieved by filling alone. |
<table>
<thead>
<tr>
<th>Aspect of Development</th>
<th>Filling Requirements</th>
<th>Minimum Fill Level</th>
<th>Minimum Extent of Filling</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>If located east of Oxley Avenue:</td>
<td>Refer to the Flood Hazard Overlay Code</td>
<td></td>
<td></td>
<td>Filling associated with development located east of Oxley Avenue is not regulated by the DMP. Filling where permitted is subject to the applicable requirements in the Flood Hazard Overlay Code and any other applicable code requirements in the MBRC Planning Scheme.</td>
</tr>
</tbody>
</table>
Appendix A - Flood Risk Mitigation to be undertaken by Council

Detailed Design DIA6
Planning Scheme Policy - Flood hazard, coastal hazard

Section 6.5: Planning Scheme Policy - Flood hazard, coastal hazard and overland flow

Article 6.5.1: Flood hazard management

1. A comprehensive flood hazard management plan shall be prepared for the area under consideration.
2. The plan shall identify flood hazard zones and recommend appropriate management strategies.
3. The plan shall be consistent with relevant state and federal guidelines.
4. The plan shall be reviewed and updated on a regular basis.

Section 6.6: Coastal hazard management

1. A comprehensive coastal hazard management plan shall be prepared for the area under consideration.
2. The plan shall identify coastal hazard zones and recommend appropriate management strategies.
3. The plan shall be consistent with relevant state and federal guidelines.
4. The plan shall be reviewed and updated on a regular basis.

Section 6.7: Overland flow management

1. A comprehensive overland flow management plan shall be prepared for the area under consideration.
2. The plan shall identify overland flow zones and recommend appropriate management strategies.
3. The plan shall be consistent with relevant state and federal guidelines.
4. The plan shall be reviewed and updated on a regular basis.

Table 6.5.1: Flood Hazard Zones

<table>
<thead>
<tr>
<th>Zone</th>
<th>Description</th>
<th>Management Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Risk</td>
<td>Flood risk is low</td>
<td>No action required</td>
</tr>
<tr>
<td>Moderate Risk</td>
<td>Flood risk is moderate</td>
<td>Mitigation strategies</td>
</tr>
<tr>
<td>High Risk</td>
<td>Flood risk is high</td>
<td>Mitigation strategies</td>
</tr>
</tbody>
</table>

Table 6.6.1: Coastal Hazard Zones

<table>
<thead>
<tr>
<th>Zone</th>
<th>Description</th>
<th>Management Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Risk</td>
<td>Coastal hazard is low</td>
<td>No action required</td>
</tr>
<tr>
<td>Moderate Risk</td>
<td>Coastal hazard is moderate</td>
<td>Mitigation strategies</td>
</tr>
<tr>
<td>High Risk</td>
<td>Coastal hazard is high</td>
<td>Mitigation strategies</td>
</tr>
</tbody>
</table>

Table 6.7.1: Overland Flow Zones

<table>
<thead>
<tr>
<th>Zone</th>
<th>Description</th>
<th>Management Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Risk</td>
<td>Overland flow is low</td>
<td>No action required</td>
</tr>
<tr>
<td>Moderate Risk</td>
<td>Overland flow is moderate</td>
<td>Mitigation strategies</td>
</tr>
<tr>
<td>High Risk</td>
<td>Overland flow is high</td>
<td>Mitigation strategies</td>
</tr>
</tbody>
</table>
Pile Schedule - Cast in Place Piles

<table>
<thead>
<tr>
<th>Pile No.</th>
<th>Pile Size</th>
<th>Defined Top of Pile</th>
<th>Top of Pile</th>
<th>Pile Length</th>
<th>ULS Loads</th>
<th>ULS Loads</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>350 BA</td>
<td>-0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>350 BA</td>
<td>-0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>350 BA</td>
<td>-0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>350 BA</td>
<td>-0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>350 BA</td>
<td>-0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>350 BA</td>
<td>-0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>350 BA</td>
<td>-0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>350 BA</td>
<td>-0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td>350 BA</td>
<td>-0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td>350 BA</td>
<td>-0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A11</td>
<td>350 BA</td>
<td>-0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A12</td>
<td>350 BA</td>
<td>-0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A13</td>
<td>350 BA</td>
<td>-0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A14</td>
<td>350 BA</td>
<td>-0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A15</td>
<td>350 BA</td>
<td>-0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A16</td>
<td>350 BA</td>
<td>-0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A17</td>
<td>350 BA</td>
<td>-0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A18</td>
<td>350 BA</td>
<td>-0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram

- **Top of Pile**
- **Legend**:
 - **Steel**: Black
 - **Concrete**: Gray

- **Section B-B**
- **Section C-C**

Notes
1. ULS loads to be assessed by the designer.
2. ULS loads are to be verified by the structural engineer.
3. ULS loads are to be verified by the structural engineer.
4. All steel bars are to be sized to meet A36 requirements.

Authorisation

- **Authorised by**: [Signature]
- **Date**: [Date]

Approval

- **Approved by**: [Signature]
- **Date**: [Date]

Project Description

Margate Creek Street Drainage Upgrade

Outfall

Fill Setout

Typical Sections

Drawing Number: 16-749-050

Issued by: [Name]

Issued for: [Project]

Scale: 1/50

Date of Issue: [Date]
DRAINAGE MASTER PLAN
DRAINAGE INVESTIGATION AREA 11b, SCARBOROUGH
1 INTRODUCTION

1.1 Introduction and Purpose of Drainage Master Plan

This Drainage Master Plan (DMP) applies to Drainage Investigation Area (DIA) 11b identified in Figure 8.2.2.6 of the Flood Hazard Overlay Code. This DMP has been prepared by the Moreton Bay Regional Council in accordance with section 3.6 of the Planning Scheme Policy – Flood Hazard, Coastal Hazard and Overland Flow.

The purpose of the DMP is to identify:

(a) the flood and drainage constraints affecting DIA 11B;

(b) the flood mitigation strategy for DIA 11b that achieves overall outcome d. of the Flood Hazard Overlay Code in a way intended to facilitate development outcomes in the DIA consistent with the Next Generation Neighbourhood Precinct and Urban Neighbourhood Precinct of the General Residential Zone (overall outcomes of the zone for both reconfiguring a lot and material change of use);

(c) the particular components of the flood mitigation strategy that will be undertaken by the Council; and

(d) the particular components and applicable standards of the flood mitigation strategy that are required to be undertaken by applicants as part of carrying out assessable development.

The DMP contains the following sections:

- Section 1 (this section) – providing an introduction and confirming when the DMP applies to assessable development;
- Section 2 – Providing an overview and description of the DIA, a summary of the flood issues relevant to the DIA and summary of the planning context/intent;
- Section 3 – Providing a description of the flood risk mitigation strategy and the different components of the strategy;
- Section 4 – Identifying the preferred implementation and sequencing of the flood mitigation strategy; and
- Section 5 – The design standards and requirements for works for all aspects of development (i.e. material change of use, reconfiguring a lot, building work and operational work) in addition to the requirements otherwise required by the MBRC Planning Scheme.

1.2 Application of DMP

This DMP applies to development carried out in DIA 11b where required in accordance with the Flood Hazard Overlay Code.

This DMP identifies standards for carrying out development in addition to the applicable planning scheme codes.
This DMP does not apply to development identified as exempt in Part 5.10.2 Levels of Assessment for the Flood Hazard Overlay.

2 DIA DESCRIPTION

2.1 Overview/Description of DIA

DIA 11b is located in the suburb of Scarborough, located in the northern area of the Redcliffe Peninsula of the Moreton Bay Region. Refer to Figure 1 identifying the location of DIA 11b in Scarborough.

Figure 1: DIA Location Map

![DIA Location Map](Interactive Mapping, 2016)

DIA 11b comprises an area of approximately 45,500m² and spans between Anderson Street to the north (including part of the park opposite Scarborough Beach) to Donkin Street to the south. Properties along Landsborough Avenue, Hanlon Street, Murphy Street, Woodcock Street and Philip Street are included in DIA 11b. Refer to Figure 2 for a map of the DIA 11b.
DIA 11b contains residential housing in the form of single detached dwellings and multiple dwelling units. DIA 11b is in proximity to an existing neighbourhood hub located on Landsborough Avenue containing a number of small-scale non-residential uses. The area is accessible to a number of open space areas, beaches and local parks.

The land included in DIA 11b slopes downwards towards Scarborough Beach located in the northeastern portion of DIA 11b, ranging from approximately 11mAHD to 2mAHD. Refer to Figure 3 below for a contour map of the area.
2.2 Summary of Flood Issues affecting the DIA

The flooding issues affecting DIA 11b are characterised by overland flows through private property caused by:

- Broad, relatively shallow flows through natural gullies that are not well aligned with the road network;
- private properties that are very similar in elevation to the surrounding road network; and
- the limited capacity of the existing drainage system to cater for minor storm events.

In the 1% Annual Exceedance Probability (AEP) flood event it is estimated the majority of properties within the DIA are inundated to some degree (i.e. prior to the implementation of the flood risk mitigation strategy contained in this DMP).

Refer to Figure 4 identifying the 1% AEP flood map for DIA 11b.
2.3 Planning Context and Intent

DIA 11b is included in the Next Generation Neighbourhood Precinct and Urban Neighbourhood Precinct of the General Residential Zone. Accordingly development outcomes expected by the DMP are those identified in the purpose and overall outcomes of the General Residential Zone Code. In summary this includes:

- a diverse mix of dwelling types at a density higher than traditional suburban areas in the Next Generation Neighbourhood Precinct; and
- a minimum density of 45 dwellings per hectare in the Urban Neighbourhood Precinct to facilitates efficient land use patterns and support compact, walkable and sustainable communities that are well connected.

Outcomes for other aspects of development not addressed by the zone code (e.g. reconfiguring a lot, operational work etc) are expressed in the relevant planning scheme codes and continue to apply to development in the DIA.

Development outcomes in DIA 11b prior to the implementation of the flood risk mitigation strategy in this DMP are constrained due to the flood impacts affecting the area. The DMP supports the intended uplift in dwelling density (consistent with the zone outcomes) in conjunction with the implementation of the DMP.

Refer to Figure 5 identifying the planning scheme zone applying to DIA 11b.
3 FLOOD RISK MITIGATION STRATEGY

3.1 Overview/Summary

The general approach to the flood risk mitigation strategy in DIA 11b is to increase the capacity of the drainage system to allow for filling of allotments to achieve appropriate flood immunity levels. Increasing the drainage capacity has the effect of reducing the known flood risk determined at the date of adoption of the planning scheme. In turn this allows the filling of all allotments in the DIA to flood immunity levels over time without exacerbating flood risks (as determined at the date of adoption of the planning scheme).

The flood risk mitigation strategy for DIA 11b therefore comprises:

(a) The flood risk mitigation to be undertaken by Council – Additional drainage works in the DIA to augment the capacity of the drainage network; and

(b) Flood risk mitigation to be undertaken by applicants - Filling of all allotments within the DIA to the required flood immunity level.

Each of these components of the flood risk mitigation strategy are described in sections 3.2 and 3.3.

The flood risk mitigation strategy will reduce flood inundation across private properties within the DIA, thereby substantially improving the development potential of the area.
3.2 Flood Risk Mitigation to be undertaken by Council

The drainage upgrade works to be undertaken by the Moreton Bay Regional Council involve augmenting the capacity of the existing drainage network by providing additional drainage infrastructure along Woodcock Street, Landsborough Avenue and Kennedy Esplanade to the Scarborough beach groyne South West outlet. Details of the proposed work are included in Appendix A - Flood Risk Mitigation to be undertaken by Council - Detailed Design DIA 11b.

The Council can be contacted to confirm the expected timing for commencement/completion of the drainage works to be undertaken by Council.

3.3 Flood Risk Mitigation to be undertaken by Applicants

The flood risk mitigation to be undertaken by applicants is to fill all allotments in the DIA to the Flood Planning Level (Defined Flood Event + required freeboard for the Flood Planning Area). It is noted that the ground level of some or parts of allotments in the DIA may already meet the required fill levels for flood immunity.

Filling required in accordance with the standards identified in Section 5 is required not only to achieve flood immunity for individual properties but to specifically direct flood waters to the street and drainage network away from surrounding properties. Filling is a fundamental part of the flood mitigation strategy for the DIA as a whole and accordingly will be a mandatory condition of development across the entire development site.

The general approach to allotment filling is to provide a uniform grade with a minimum 1:100 crossfall to the street for the whole allotment/development site. Section 5 and Table 1 of the DMP identifies the detailed standards and circumstances where filling is required for all aspects of development (i.e. material change of use, reconfiguring a lot etc). Filling is required where carrying out a material change of use and/or reconfiguring a lot (other than a boundary realignement). Filling is permitted but not mandatory in other circumstances.

4 FLOOD RISK MITIGATION IMPLEMENTATION AND SEQUENCING

The drainage upgrade works to be carried out by Council as detailed in Section 3.2 must be completed before filling of allotments in accordance with the standards in Section 5 is permitted.

Filling proposed prior to the implementation of the drainage works to be carried out by Council is not in accordance with this DMP and subject to the respective performance outcomes of the Flood hazard overlay code.

5 REQUIREMENTS FOR WORKS AND DESIGN STANDARDS

The flood risk mitigation to be undertaken by applicants includes filling where required in accordance with Table 1.

Alternative approaches to the standards in this section are subject to assessment against the applicable performance outcomes of the Flood hazard overlay code.
Table 1 - Fill Requirements

Note: The drainage upgrade works to be carried out by Council as detailed in Section 3.2 must be completed before filling of allotments in accordance with the standards in Section 5 is permitted. Filling proposed prior to the implementation of the drainage works to be carried out by Council is not in accordance with this DMP and subject to the respective performance outcomes of the Flood hazard overlay code.

<table>
<thead>
<tr>
<th>Aspect of Development</th>
<th>Filling Requirements</th>
<th>Minimum Fill Level</th>
<th>Minimum Extent of Filling</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Material change of use and/or Reconfiguring a lot (other than a boundary realignment) | Filling is mandatory | Flood Planning Level | The entire allotment/development site area and meeting the following:
(a) provide a minimum 1:100 uniform cross fall shaped to contains flood waters to the street and drainage network with the exception of meeting (b) and (c);
(b) provide an accessible grade for vehicle access by the applicable design vehicle for the development from the street to the minimum fill level; and
(c) ensure no worsening of flood impacts to other properties beyond known flood impacts at the date of adoption of the planning scheme. | The filling requirements outlined in this DMP must be considered in conjunction with the other applicable code requirements identified in the MBRC Planning Scheme. This may include consideration of, but not limited to:
- earthworks, drainage, filling and associated retaining walls to avoid adverse impacts on adjacent properties; and
- flood immunity requirements for building work and other components of development where not achieved by filling alone. |
<table>
<thead>
<tr>
<th>Aspect of Development</th>
<th>Filling Requirements</th>
<th>Minimum Fill Level</th>
<th>Minimum Extent of Filling</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Reconfiguring a lot where for a boundary realignment | Filling is permitted but not mandatory | N/A | N/A | Filling is permitted and minimum fill levels are not regulated by the DMP for this aspect of development. Note: Maximum fill to DMP levels is encouraged. Where filling occurs, other applicable code requirements apply in the MBRC Planning Scheme. This may include consideration of, but not limited to:
 • earthworks, drainage, filling and associated retaining walls to avoid adverse impacts on adjacent properties; and
 • flood immunity requirements for building work and other components of development where not achieved by filling alone. |

<table>
<thead>
<tr>
<th>Aspect of Development</th>
<th>Filling Requirements</th>
<th>Minimum Fill Level</th>
<th>Minimum Extent of Filling</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Operational work (filling or excavation only) | Filling is mandatory | Flood Planning Level | The entire allotment/development site area and meeting the following:
(a) provide a minimum 1:100 uniform cross fall shaped to contain flood waters to the street and drainage network with the exception of meeting (b) and (c);
(b) provide an accessible grade for vehicle access by the applicable design vehicle for the development from the street to the minimum fill level; and
(c) ensure no worsening of flood impacts to other properties beyond known flood impacts at the date of adoption of the planning scheme. | The filling requirements outlined in this DMP must be considered in conjunction with the other applicable code requirements identified in the MBRC Planning Scheme. This may include consideration of, but not limited to:
- earthworks, drainage, filling and associated retaining walls to avoid adverse impacts on adjacent properties; and
- flood immunity requirements for building work and other components of development where not achieved by filling alone. |
<table>
<thead>
<tr>
<th>Aspect of Development</th>
<th>Filling Requirements</th>
<th>Minimum Fill Level</th>
<th>Minimum Extent of Filling</th>
<th>Notes</th>
</tr>
</thead>
</table>
| All other operational work where not associated with a material change of use or reconfiguring a lot | Filling is permitted but not mandatory | N/A | N/A | Filling is permitted and minimum fill levels are not regulated by the DMP for this aspect of development. The filling requirements outlined in this DMP must be considered in conjunction with the other applicable code requirements identified in the MBRC Planning Scheme. This may include consideration of, but not limited to:
- earthworks, drainage filling and associated retaining walls to avoid adverse impacts on adjacent properties; and
- flood immunity requirements for building work and other components of development where not achieved by filling alone. |
| Building work where not associated with a material change of use | Filling is permitted but not mandatory | N/A | N/A | Filling is permitted and minimum fill levels are not regulated by the DMP for this aspect of development. The filling requirements outlined in this DMP must be considered in conjunction with the other applicable code requirements identified in the MBRC Planning Scheme. This may include consideration of, but not limited to:
- earthworks, filling and associated retaining walls to avoid adverse impacts on adjacent properties; and
- flood immunity requirements for building work and other components of development where not achieved by filling alone. |
Appendix A - Flood Risk Mitigation to be undertaken by Council

Detailed Design DIA11B
DRAINAGE MASTER PLAN
DRAINAGE INVESTIGATION AREA 12, SCARBOROUGH
1 INTRODUCTION

1.1 Introduction and Purpose of Drainage Master Plan

This Drainage Master Plan (DMP) applies to Drainage Investigation Area (DIA) 12 identified in Figure 8.2.2.6 of the Flood Hazard Overlay Code. This DMP has been prepared by the Moreton Bay Regional Council in accordance with section 3.6 of the Planning Scheme Policy – Flood Hazard, Coastal Hazard and Overland Flow.

The purpose of the DMP is to identify:

(a) the flood and drainage constraints affecting DIA 12;
(b) the flood mitigation strategy for DIA 12 that achieves overall outcome d. of the Flood Hazard Overlay Code in a way intended to facilitate development outcomes in the DIA consistent with the Next Generation Neighbourhood Precinct of the General Residential Zone;
(c) the particular components of the flood mitigation strategy that will be undertaken by the Council; and
(d) the particular components and applicable standards of the flood mitigation strategy that are required to be undertaken by applicants as part of carrying out assessable development.

The DMP contains the following sections:

- Section 1 (this section) – providing an introduction and confirming when the DMP applies to assessable development;
- Section 2 – Providing an overview and description of the DIA, a summary of the flood issues relevant to the DIA and summary of the planning context/intent;
- Section 3 – Providing a description of the flood risk mitigation strategy and the different components of the strategy;
- Section 4 – Identifying the preferred implementation and sequencing of the flood mitigation strategy; and
- Section 5 – The design standards and requirements for works for all aspects of development (i.e. material change of use, reconfiguring a lot, building work and operational work) in addition to the requirements otherwise required by the MBRC Planning Scheme.

1.2 Application of DMP

This DMP applies to development carried out in DIA 12 where required in accordance with the Flood Hazard Overlay Code.

This DMP identifies standards for carrying out development in addition to the applicable planning scheme codes.

This DMP does not apply to development identified as exempt in Part 5.10.2 Levels of Assessment for the Flood Hazard Overlay.

2 DIA DESCRIPTION

2.1 Overview/Description of DIA

DIA 12 is located in the suburb of Scarborough, located in the northern area of the Redcliffe Peninsula of the Moreton Bay Region. Refer to Figure 1 identifying the location of DIA 12 in Scarborough.
DIA 12 comprises an area of approximately 25,000m² and spans from Oyster Point Esplanade to the west to portions of land included along Jeays Street, North Quay and Thurecht Parade. Refer to Figure 2 for a map of the DIA 12.
DIA 12 predominately contains detached residential housing with some small-scale non-residential activities. DIA 12 is located in proximity to the Kippa-Ring local centre, Redcliffe seaside village, Rothwell specialised centre as well as the nearby larger centres located at Margate and North Lakes. The area is accessible to a number of open space areas, beaches and local parks, including Thurecht Park which is located opposite DIA 12.

The area including DIA 12 and surrounds is flat and low lying terrain. Refer to Figure 3 below for a contour map of the area.
2.2 Summary of Flood Issues affecting the DIA

The flooding issues affecting DIA 12 are characterised by shallow surface flows through private property caused by:

- the very flat, low lying terrain;
- private properties that are very similar in elevation to the surrounding road network; and
- the limited capacity of the existing drainage system to cater for minor storm events.

In the 1% AEP flood event it is estimated the majority of properties within the DIA are inundated to some degree (i.e. prior to the implementation of the flood risk mitigation strategy contained in this DMP).

Refer to Figure 4 identifying the 1% AEP flood map for DIA 12.

Figure 4: 1% AEP Flood Map

Source: MBRC Flood Explorer, 2016

2.3 Planning Context and Intent

DIA 12 is entirely included in the Next Generation Neighbourhood Precinct of the General Residential Zone. Accordingly development outcomes expected by the DMP are those identified in the purpose and overall outcomes of the General Residential Zone Code. In summary this includes a diverse mix of dwellings types at a density moderately higher than traditional suburban areas.

Outcomes for other aspects of development not addressed by the zone code (e.g. reconfiguring a lot, operational work etc) are expressed in the relevant planning scheme codes and continue to apply to development in the DIA.

Development outcomes in DIA 12 prior to the implementation of the flood risk mitigation strategy in this DMP are constrained due to the flood impacts affecting the area. The implementation of the DMP
and development standards supports the intended uplift in dwelling density (consistent with the zone outcomes) in conjunction with the implementation of the DMP.

Refer to Figure 5 identifying the planning scheme zone applying to DIA 12.

Figure 5: Planning Scheme Zone

![Planning Scheme Zone Diagram]

Source: MBRC Interactive Mapping, 2016

3 FLOOD RISK MITIGATION STRATEGY

3.1 Overview/Summary

The general approach to the flood risk mitigation strategy in DIA 12 is to increase the capacity of the drainage system to allow for filling of allotments to achieve appropriate flood immunity levels. Increasing the drainage capacity has the effect of reducing the known flood risk determined at the date of adoption of the planning scheme. In turn this allows the filling of all allotments in the DIA to flood immunity levels over time without exacerbating flood risks (as determined at the date of adoption of the planning scheme).

The flood risk mitigation strategy for DIA 12 therefore comprises:

(a) The flood risk mitigation to be undertaken by Council - Drainage upgrade works in Thurecht Parade and Thurecht Park; and

(b) The flood risk mitigation to be undertaken by applicants - Filling of all allotments within the DIA to the required flood immunity level.

Each of these components of the flood risk mitigation strategy are described in sections 3.2 and 3.3.

The flood risk mitigation strategy will reduce flood inundation across private properties within the DIA, thereby substantially improving the development potential of the area. The implementation of the
flood risk mitigation strategy will ensure that in the post-mitigation case for the 1% AEP flood event no properties are inundated.

3.2 Flood Risk Mitigation to be undertaken by Council

The drainage upgrade works to be undertaken by the Moreton Bay Regional Council involve upgrading the capacity of part of the existing drainage network in Thurecht Parade and Thurecht Park. Details of the proposed work are included in Appendix A - Flood Risk Mitigation to be undertaken by Council - Detailed Design DIA 12.

The Council can be contacted to confirm the expected timing for commencement/completion of the drainage works to be undertaken by Council.

3.3 Flood Risk Mitigation to be undertaken by Applicants

The flood risk mitigation to be undertaken by applicants is to fill all allotments in the DIA to the Flood Planning Level (Defined Flood Event + required freeboard for the Flood Planning Area). The Defined Flood Event at this location is dictated by coastal hazard flooding due to the low lying nature of the land.

Filling required in accordance with the standards identified in section 5 is required not only to achieve flood immunity for individual properties but to specifically direct flood waters to the street and drainage network away from surrounding properties. Filling is a fundamental part of the flood mitigation strategy for the DIA as a whole and accordingly will be a mandatory condition of development.

The general approach to allotment filling is to provide a uniform grade with a minimum 1:100 crossfall to the street for the whole allotment/development site. Section 5 and Table 1 of the DMP identifies the detailed standards and circumstances where filling is required for all aspects of development (i.e. material change of use, reconfiguring a lot, building work and operational work). Filling is required where carrying out a material change of use and/or reconfiguring a lot (other than a boundary realignment). Filling is permitted but not mandatory in other circumstances.

4 Flood Risk Mitigation Implementation and Sequencing

The drainage upgrade works to be carried out by Council as detailed in Section 3.2 must be completed before filling of allotments in accordance with the standards in Section 5 is permitted.

Filling proposed prior to the implementation of the drainage works to be carried out by Council is not in accordance with this DMP and subject to the respective performance outcomes of the Flood hazard overlay code.

5 Requirements for Works and Design Standards

The flood risk mitigation to be undertaken by applicants includes filling where required in accordance with Table 1.

Alternative approaches to the standards in this section are subject to assessment against the applicable performance outcomes of the Flood hazard overlay code.
Table 1 - Fill Requirements

Note: The drainage upgrade works to be carried out by Council as detailed in Section 3.2 must be completed before filling of allotments in accordance with the standards in Section 5 is permitted. Filling proposed prior to the implementation of the drainage works to be carried out by Council is not in accordance with this DMP and subject to the respective performance outcomes of the Flood hazard overlay code.

<table>
<thead>
<tr>
<th>Aspect of Development</th>
<th>Filling Requirements</th>
<th>Minimum Fill Level</th>
<th>Minimum Extent of Filling</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material change of use and/or Reconfiguring a lot (other than a boundary realignment)</td>
<td>Filling is mandatory</td>
<td>Flood Planning Level</td>
<td>The entire allotment/development site area and meeting the following: (a) provide a minimum 1:100 uniform cross fall shaped to contains flood waters to the street and drainage network with the exception of meeting (b) and (c); (b) provide an accessible grade for vehicle access by the applicable design vehicle for the development from the street to the minimum fill level; and (c) ensure no worsening of flood impacts to other properties beyond known flood impacts at the date of adoption of the planning scheme.</td>
<td>The filling requirements outlined in this DMP must be considered in conjunction with the other applicable code requirements identified in the MBRC Planning Scheme. This may include consideration of, but not limited to: • earthworks, drainage, filling and associated retaining walls to avoid adverse impacts on adjacent properties; and • flood immunity requirements for building work and other components of development where not achieved by filling alone.</td>
</tr>
<tr>
<td>Aspect of Development</td>
<td>Filling Requirements</td>
<td>Minimum Fill Level</td>
<td>Minimum Extent of Filling</td>
<td>Notes</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------------</td>
<td>--------------------</td>
<td>--------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Reconfiguring a Lot where for a boundary realignment | Filling is permitted but not mandatory | N/A | N/A | Filling is permitted and minimum fill levels are not regulated by the DMP for this aspect of development. Note: Maximum fill to DMP levels is encouraged. Where filling occurs, other applicable code requirements apply in the MBRC Planning Scheme. This may include consideration of, but not limited to:
 - earthworks, drainage, filling and associated retaining walls to avoid adverse impacts on adjacent properties; and
 - flood immunity requirements for building work and other components of development where not achieved by filling alone. |
<table>
<thead>
<tr>
<th>Aspect of Development</th>
<th>Filling Requirements</th>
<th>Minimum Fill Level</th>
<th>Minimum Extent of Filling</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational work (filling or excavation only)</td>
<td>Filling is mandatory</td>
<td>Flood Planning Level</td>
<td>The entire allotment/development site area and meeting the following:</td>
<td>The filling requirements outlined in this DMP must be considered in conjunction with the other applicable code requirements identified in the MBRC Planning Scheme. This may include consideration of, but not limited to:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(a) provide a minimum 1:100 uniform cross fall shaped to contain flood waters to the street and drainage network with the exception of meeting (b) and (c);</td>
<td>• earthworks, drainage, filling and associated retaining walls to avoid adverse impacts on adjacent properties; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(b) provide an accessible grade for vehicle access by the applicable design vehicle for the development from the street to the minimum fill level; and</td>
<td>• flood immunity requirements for building work and other components of development where not achieved by filling alone.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(c) ensure no worsening of flood impacts to other properties beyond known flood impacts at the date of adoption of the planning scheme.</td>
<td></td>
</tr>
<tr>
<td>Aspect of Development</td>
<td>Filling Requirements</td>
<td>Minimum Fill Level</td>
<td>Minimum Extent of Filling</td>
<td>Notes</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
<td>--------------------</td>
<td>---------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| All other operational work where not associated with a material change of use or reconfiguring a lot | Filling is permitted but not mandatory | N/A | N/A | Filling is permitted and minimum fill levels are not regulated by the DMP for this aspect of development. The filling requirements outlined in this DMP must be considered in conjunction with the other applicable code requirements identified in the MBRC Planning Scheme. This may include consideration of, but not limited to:
- earthworks, drainage filling and associated retaining walls to avoid adverse impacts on adjacent properties; and
- flood immunity requirements for building work and other components of development where not achieved by filling alone. |
| Building work where not associated with a material change of use | Filling is permitted but not mandatory | N/A | N/A | Filling is permitted and minimum fill levels are not regulated by the DMP for this aspect of development. The filling requirements outlined in this DMP must be considered in conjunction with the other applicable code requirements identified in the MBRC Planning Scheme. This may include consideration of, but not limited to:
- earthworks, filling and associated retaining walls to avoid adverse impacts on adjacent properties; and
- flood immunity requirements for building work and other components of development where not achieved by filling alone. |
Appendix A - Flood Risk Mitigation to be undertaken by Council

Detailed Design DIA 12
<table>
<thead>
<tr>
<th>Location</th>
<th>Zone</th>
<th>District</th>
<th>Flood Zone</th>
<th>Protection Level</th>
<th>Flood Hazard Coefficient</th>
<th>Coastal Hazard Coefficient</th>
<th>Overland Flow Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone 1</td>
<td>A</td>
<td>District 1</td>
<td>Zone A</td>
<td>1</td>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Zone 2</td>
<td>B</td>
<td>District 2</td>
<td>Zone B</td>
<td>2</td>
<td>0.7</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Zone 3</td>
<td>C</td>
<td>District 3</td>
<td>Zone C</td>
<td>3</td>
<td>0.9</td>
<td>0.6</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Legend:
- Flood Zone: A - 1, B - 2, C - 3
- Protection Level: 1, 2, 3
- Coefficient: Flood Hazard, Coastal Hazard, Overland Flow

Note: This table provides a summary of planning scheme policies for flood, coastal, and overland flow hazards. Further details can be found in the attached documents.
<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
<th>Column 4</th>
<th>Column 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data 1</td>
<td>Data 2</td>
<td>Data 3</td>
<td>Data 4</td>
<td>Data 5</td>
</tr>
<tr>
<td>Data 6</td>
<td>Data 7</td>
<td>Data 8</td>
<td>Data 9</td>
<td>Data 10</td>
</tr>
<tr>
<td>Data 11</td>
<td>Data 12</td>
<td>Data 13</td>
<td>Data 14</td>
<td>Data 15</td>
</tr>
<tr>
<td>Data 16</td>
<td>Data 17</td>
<td>Data 18</td>
<td>Data 19</td>
<td>Data 20</td>
</tr>
<tr>
<td>Data 21</td>
<td>Data 22</td>
<td>Data 23</td>
<td>Data 24</td>
<td>Data 25</td>
</tr>
<tr>
<td>Data 26</td>
<td>Data 27</td>
<td>Data 28</td>
<td>Data 29</td>
<td>Data 30</td>
</tr>
</tbody>
</table>

Note: The table content is placeholders for actual data.
DRAINAGE MASTER PLAN
DRAINAGE INVESTIGATION AREA 16, BURPENGARY
1 INTRODUCTION

1.2 Introduction and Purpose of Drainage Master Plan

This Drainage Master Plan (DMP) applies to Drainage Investigation Area (DIA) 16 identified in Figure 8.2.2.9 of the Flood Hazard Overlay Code. This DMP has been prepared by the Moreton Bay Regional Council (MBRC) in accordance with section 3.6 of the Planning Scheme Policy – Flood Hazard, Coastal Hazard and Overland Flow.

The purpose of the DMP is to identify:

(a) the flood and drainage constraints affecting DIA 16;
(b) the flood mitigation strategy for DIA 16 that achieves overall outcome d. of the Flood Hazard Overlay Code in a way intended to facilitate development in the DIA consistent with the Urban Neighbourhood Precinct of the General Residential Zone;
(c) the particular components of the flood mitigation strategy that will be undertaken by the Council; and
(d) the particular components and applicable standards of the flood mitigation strategy that are required to be undertaken by applicants as part of carrying out assessable development.

The DMP contains the following sections:

- Section 1 (this section) – providing an introduction and confirming when the DMP applies to assessable development;
- Section 2 – Providing an overview and description of the DIA, a summary of the flood issues relevant to the DIA and summary of the planning context/intent;
- Section 3 – Providing a description of the flood risk mitigation strategy and the different components of the strategy;
- Section 4 – Identifying the preferred implementation and sequencing of the flood mitigation strategy; and
- Section 5 – The design standards and requirements for works for all aspects of development (i.e. material change of use, reconfiguring a lot, building work and operational work) in addition to the requirements otherwise required by the MBRC Planning Scheme.

1.2 Application of DMP

This DMP applies to development carried out in DIA 16 where required in accordance with the Flood Hazard Overlay Code.

This DMP identifies standards for carrying out development in addition to the applicable planning scheme codes.

This DMP does not apply to development identified as exempt in Part 5.10.2 Levels of Assessment for the Flood Hazard Overlay.

2 DIA DESCRIPTION

2.1 Overview/Description of DIA

DIA 16 is located in the suburb of Burpengary, a primarily suburban neighbourhood of the Moreton Bay Region. Burpengary is located between the rail corridor to the west and the Bruce Highway to the east. Refer to Figure 1 identifying the location of DIA 16 in Burpengary.
DIA 16 comprises an area of approximately 40,000m² and contains properties located at the southern end of David and Joyce Streets. DIA 16 also adjoins an open space area to the south. Refer to Figure 2 for a map of the DIA 16.

Figure 1: DIA Location Map

Source: MBRC Aerial Photography, 2015
DIA 16 predominately contains a mix of detached residential housing and multiple dwelling activities and is in proximity to the Burpengary district centre. DIA 16 is also located in proximity to the higher order centre precincts of Caboolture and Morayfield as well as a number of local and specialised centre precincts. The area is accessible to a number of open space areas and local parks accessible through the open space network located south of DIA 16.

The area including DIA 16 and surrounds is flat and low lying terrain. Refer to Figure 3 below for a contour map of the area.

2.2 Summary of Flood Issues affecting the DIA

The flooding issues affecting DIA 16 are characterised by flood water break out of the channel adjacent to the south-west corner of DIA 16. The watercourse is a tributary of Burpengary Creek and the flood impacts are caused by existing land development and construction within the watercourse.

In the 1% Annual Exceedance Probability (AEP) flood event it is estimated the majority of properties within the DIA are inundated to some degree (i.e. prior to the implementation of the flood risk mitigation strategy contained in this DMP).

Refer to Figure 4 identifying the 1% AEP flood map for DIA 16.
2.3 Planning Context and Intent

DIA 16 is entirely included in the Urban Neighbourhood Precinct of the General Residential Zone. Accordingly development outcomes expected by the DMP are those identified in the purpose and overall outcomes of the General Residential Zone Code. In summary this includes a diverse mix of residential uses at a scale and density that facilitates efficient land use patterns and supports compact, walkable and sustainable communities that are well connected.

Outcomes for other aspects of development not addressed by the zone codes (e.g. reconfiguring a lot, operational work etc) are expressed in the relevant planning scheme codes and continue to apply to development in the DIA.

Development outcomes in DIA 16 prior to the implementation of the flood risk mitigation strategy in this DMP are constrained due to the flood impacts affecting the area. The implementation of the DMP and development standards supports the intended high dwelling density at this location (consistent with the zone outcomes) in conjunction with the implementation of the DMP.

Refer to Figure 5 identifying the planning scheme zone applying to DIA 16.
3 FLOOD RISK MITIGATION STRATEGY

3.1 Overview/Summary

The general approach to the flood risk mitigation strategy in DIA 16 is to increase the capacity of the drainage system to allow for filling of allotments to achieve appropriate flood immunity levels. Increasing the drainage capacity has the effect of reducing the known flood risk determined at the date of adoption of the planning scheme. In turn this allows the filling of all allotments in the DIA to flood immunity levels over time without exacerbating flood risks (as determined at the date of adoption of the planning scheme).

The flood risk mitigation strategy for DIA 16 therefore comprises:

(a) The flood risk mitigation to be undertaken by Council - Drainage upgrade works in the park and flood plain located south of the DIA; and
(b) The flood risk mitigation to be undertaken by applicants - Filling of allotments within the DIA to the required flood immunity level.

Each of these components of the flood risk mitigation strategy are described in sections 3.2 and 3.3.

Based on the hydraulic modelling the flood risk mitigation strategy will reduce the medium and high flood risk areas in the DIA supporting development to the fullest potential intended by the MBRC Planning Scheme.
3.2 **Flood Risk Mitigation to be undertaken by Council**

The drainage upgrade works to be undertaken by the Moreton Bay Regional Council involve upgrading the capacity of the existing open drain adjacent to the southern boundary of the DIA. The works involve increasing the capacity of the drain with a 10m wide base to reduce the adjacent flood levels by 50mm.

Detailed of the proposed work are included in *Appendix A - Flood Risk Mitigation to be undertaken by Council - Detailed Design DIA 16*.

The Council can be contacted to confirm the expected timing for commencement/completion of the drainage works to be undertaken by Council.

3.3 **Flood Risk Mitigation to be undertaken by Applicants**

The flood risk mitigation to be undertaken by applicants is to fill all allotments within the DIA to the Flood Planning Level (Defined Flood Event + required freeboard for the Flood Planning Area).

Filling required in accordance with the standards identified in section 5 is required not only to achieve flood immunity for individual properties but to specifically direct flood waters to the street and drainage network away from surrounding properties. Filling is a fundamental part of the flood mitigation strategy for the DIA as a whole and accordingly will be a mandatory condition of development.

The general approach to allotment filling is to provide a uniform grade with a minimum 1:100 cross fall to the street for the whole allotment/development site. Section 5 and Table 1 of the DMP identifies the detailed standards and circumstances where filling is required for all aspects of development (i.e. material change of use, reconfiguring a lot, building work and operational work). Filling is required where carrying out a material change of use and/or reconfiguring a lot (other than a boundary realignment). Filling is permitted but not mandatory in other circumstances.

4 **FLOOD RISK MITIGATION IMPLEMENTATION AND SEQUENCING**

The drainage upgrade works to be carried out by Council as detailed in Section 3.2 must be completed before filling of allotments in accordance with the standards in Section 5 is permitted.

Filling proposed prior to the implementation of the drainage works to be carried out by Council is not in accordance with this DMP and subject to the respective performance outcomes of the Flood hazard overlay code.

5 **REQUIREMENTS FOR WORKS AND DESIGN STANDARDS**

The flood risk mitigation to be undertaken by applicants includes filling where required in accordance with Table 1.

Alternative approaches to the standards in this section are subject to assessment against the applicable performance outcomes of the Flood hazard overlay code.
Table 1 - Fill Requirements

Note: The drainage upgrade works to be carried out by Council as detailed in Section 3.2 must be completed before filling of allotments in accordance with the standards in Section 5 is permitted. Filling proposed prior to the implementation of the drainage works to be carried out by Council is not in accordance with this DMP and subject to the respective performance outcomes of the Flood hazard overlay code.

<table>
<thead>
<tr>
<th>Aspect of Development</th>
<th>Filling Requirements</th>
<th>Minimum Fill Level</th>
<th>Minimum Extent of Filling</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material change of use and/or Reconfiguring a lot (other than a boundary realignment)</td>
<td>Filling is mandatory</td>
<td>Flood Planning Level</td>
<td>The entire allotment/development site area and meeting the following: (a) provide a minimum 1:100 uniform cross fall shaped to contains flood waters to the street and drainage network with the exception of meeting (b) and (c); (b) provide an accessible grade for vehicle access by the applicable design vehicle for the development from the street to the minimum fill level; and (c) ensure no worsening of flood impacts to other properties beyond known flood impacts at the date of adoption of the planning scheme.</td>
<td>The filling requirements outlined in this DMP must be considered in conjunction with the other applicable code requirements identified in the MBRC Planning Scheme. This may include consideration of, but not limited to: • earthworks, drainage, filling and associated retaining walls to avoid adverse impacts on adjacent properties; and • flood immunity requirements for building work and other components of development where not achieved by filling alone.</td>
</tr>
<tr>
<td>Aspect of Development</td>
<td>Filling Requirements</td>
<td>Minimum Fill Level</td>
<td>Minimum Extent of Filling</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------</td>
<td>--------------------</td>
<td>---------------------------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| Reconfiguring a Lot where for a boundary realignment | Filling is permitted but not mandatory | N/A | N/A | Filling is permitted and minimum fill levels are not regulated by the DMP for this aspect of development. Note: Maximum fill to DMP levels is encouraged. Where filling occurs, other applicable code requirements apply in the MBRC Planning Scheme. This may include consideration of, but not limited to:
• earthworks, drainage, filling and associated retaining walls to avoid adverse impacts on adjacent properties; and
• flood immunity requirements for building work and other components of development where not achieved by filling alone. |
<table>
<thead>
<tr>
<th>Aspect of Development</th>
<th>Filling Requirements</th>
<th>Minimum Fill Level</th>
<th>Minimum Extent of Filling</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational work (filling or excavation only)</td>
<td>Filling is mandatory</td>
<td>Flood Planning Level</td>
<td>The entire allotment/development site area and meeting the following: (a) provide a minimum 1:100 uniform cross fall shaped to contain flood waters to the street and drainage network with the exception of meeting (b) and (c); (b) provide an accessible grade for vehicle access by the applicable design vehicle for the development from the street to the minimum fill level; and (c) ensure no worsening of flood impacts to other properties beyond known flood impacts at the date of adoption of the planning scheme.</td>
<td>The filling requirements outlined in this DMP must be considered in conjunction with the other applicable code requirements identified in the MBRC Planning Scheme. This may include consideration of, but not limited to: • earthworks, drainage, filling and associated retaining walls to avoid adverse impacts on adjacent properties; and • flood immunity requirements for building work and other components of development where not achieved by filling alone.</td>
</tr>
<tr>
<td>Aspect of Development</td>
<td>Filling Requirements</td>
<td>Minimum Fill Level</td>
<td>Minimum Extent of Filling</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------</td>
<td>--------------------</td>
<td>--------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>All other operational work where not associated with a material change of use or reconfiguring a lot</td>
<td>Filling is permitted but not mandatory</td>
<td>N/A</td>
<td>N/A</td>
<td>Filling is permitted and minimum fill levels are not regulated by the DMP for this aspect of development. The filling requirements outlined in this DMP must be considered in conjunction with the other applicable code requirements identified in the MBRC Planning Scheme. This may include consideration of, but not limited to: • earthworks, drainage filling and associated retaining walls to avoid adverse impacts on adjacent properties; and • flood immunity requirements for building work and other components of development where not achieved by filling alone.</td>
</tr>
<tr>
<td>Building work where not associated with a material change of use</td>
<td>Filling is permitted but not mandatory</td>
<td>N/A</td>
<td>N/A</td>
<td>Filling is permitted and minimum fill levels are not regulated by the DMP for this aspect of development. The filling requirements outlined in this DMP must be considered in conjunction with the other applicable code requirements identified in the MBRC Planning Scheme. This may include consideration of, but not limited to: • earthworks, filling and associated retaining walls to avoid adverse impacts on adjacent properties; and • flood immunity requirements for building work and other components of development where not achieved by filling alone.</td>
</tr>
</tbody>
</table>
Appendix A - Flood Risk Mitigation to be undertaken by Council

Detailed Design DIA16
Appendix 2

Future Drainage Investigation Area - Male Road.